
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

Real-time simulation of dynamic vehicle models
using high performance reconfigurable computing
platforms
Madhu Monga
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Monga, Madhu, "Real-time simulation of dynamic vehicle models using high performance reconfigurable computing platforms"
(2010). Graduate Theses and Dissertations. 11663.
https://lib.dr.iastate.edu/etd/11663

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F11663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11663?utm_source=lib.dr.iastate.edu%2Fetd%2F11663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Real-time simulation of dynamic vehicle models using high performance

reconfigurable computing platforms

by

Madhu Monga

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Joseph Zambreno, Major Professor

Brian L. Steward
Atul G. Kelkar

Dionysios C. Aliprantis

Iowa State University

Ames, Iowa

2010

Copyright c© Madhu Monga, 2010. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . iv

ABSTRACT . ix

CHAPTER 1. Introduction . 1

CHAPTER 2. Simulation of Vehicle System Dynamics 7

CHAPTER 3. Design Methodology . 12

3.1 Factors affecting hardware partitioning . 12

3.2 Hardware Design Analysis . 17

3.2.1 Accuracy/Precision and Time Analysis 18

3.2.2 Space and Time Analysis . 21

3.3 Hardware Design Generation . 24

3.3.1 Design Generation . 24

3.3.2 Design Verification . 25

3.4 Software Design Analysis . 26

CHAPTER 4. Hardware Component Library 28

4.1 Look-up Curve Component . 28

4.1.1 Principle . 28

4.1.2 Implementation . 29

4.2 Square-Root Component . 30

4.2.1 Principle . 31

4.2.2 Implementation . 31

www.manaraa.com

iii

4.3 Trigonometric Function Component . 33

4.3.1 Principle . 33

CHAPTER 5. Application of the Methodology on an 8th Order Vehicle System 36

5.1 8th Order Vehicle System - Steering Valve and Vehicle model 36

5.2 Application of the Methodology . 40

5.3 State-space solver - RK4 Integrator . 47

5.4 Design Layout . 50

5.5 Data Flow and Cycle Estimate . 54

5.6 XD2000i Architecture . 56

5.7 Simulation and Synthesis Results . 58

CHAPTER 6. RELATED WORK AND FUTURE RESEARCH 61

6.1 Related Work . 61

6.2 Conclusion and Future Research . 63

BIBLIOGRAPHY . 63

www.manaraa.com

iv

LIST OF TABLES

5.1 Cycle Count by Individual Hardware Components 43

5.2 Comparison of FPGA devices . 47

5.3 Resource usage by different components 58

www.manaraa.com

v

LIST OF FIGURES

1.1 FPGA vs CPU vs real-time simulation with different number of states 3

1.2 Simulation architecture . 4

1.3 Hardware/Software co-design approach for Vehicle System Simulation . 5

2.1 Numerical integration using Runge-Kutta methods 9

2.2 Numerical integration using Adams-Bashforth and Adams-Moulton Method 10

2.3 Effect of step size and number of states on the CPU computation time

for RK4 integrator . 11

3.1 Fixed-Point representation . 14

3.2 Effect of number of bits on computation time 16

3.3 Heuristic approach for hardware partitioning 17

3.4 Hardware resource utilization for RK4, Look-up Curve, Square Root

and Trigonometric Components . 22

4.1 Pipeline of Look-up Curve Component 30

4.2 Methodology to obtain 2n, its square root and a 33

5.1 Architecture of the vehicle system . 38

5.2 Coefficients and variables for Steering Valve and Vehicle model 40

5.3 Relative error in the output of Steering Valve and Vehicle Model . . . 44

5.4 Hardware resource utilization for RK4 component for the vehicle model 45

5.5 Bandwidth analysis . 46

5.6 Data-flow diagram for RK4 iteration 48

www.manaraa.com

vi

5.7 Pipeline architecture of System Dynamics component for an 8th order

system . 49

5.8 Design Layout of FPGA-based simulator for the Vehicle System 52

5.9 Design Partitioning on XD2000i Architecture 57

5.10 Response of the Steering Valve model to simualted and actual Steering

input . 60

www.manaraa.com

vii

DEDICATION

To,

My parents

and

In loving memory of my grandparents.

www.manaraa.com

viii

ACKNOWLEDGEMENTS

I would like to thank Dr. Joseph Zambreno for his continuous support and feedback through-

out the entire duration of this course work. I appreciate his patience and effort in explaining

things which helped create a very comfortable and encouraging work environment. He always

provided a different perspective to the various situations faced and helped me make this thesis

better. Working with him has helped me immensely, both on personal and professional fronts.

I would also like to thank Dr. Brian Steward and Dr. Atul Kelkar for their valuable

suggestions in improving the implementations, and Dr. Dionysios Aliprantis for providing a

different outlook to this research.

This section would be incomplete without extending my thanks to Dr. Phillip Jones, who

has been a great mentor, all throughout the graduate school. I really appreciate him for his

time and effort spent in order to help me understand different hardware platforms. A note

of thanks to Dr. Manoj Karkee, who took his time out to explain me different aspects of the

vehicle system dynamics and to my team members and lab mates.

Last but not the least, it is all because of immense support and love from my family and my

friends, whose love and encouragement have always given me strength to keep moving ahead.

www.manaraa.com

ix

ABSTRACT

A software-based approach for Real-Time Simulation (RTS) may have difficulties in meeting

real-time constraints for complex models. In this thesis, we present a methodology for the design

and implementation of RTS algorithms, based on the use of Field-Programmable Gate Array

(FPGA) technology to improve the response time of these models. Our methodology utilizes

traditional Hardware/Software co-design approaches to generate a heterogeneous architecture

for an FPGA-based simulator. We have optimized the hardware design such that it efficiently

utilizes the parallel nature of FPGAs and pipelines the independent operations. Further en-

hancement is obtained through the use of custom custom accelerators for common non-linear

functions. Since the systems we examine have relatively low response time requirements, our

approach greatly simplifies the software components by porting the computationally complex

regions to hardware. We illustrate the partitioning of a hardware-based simulator design across

dual FPGAs, initiate RTS using a system input from a Hardware-in-the-Loop (HIL) framework,

and use these simulation results from our FPGA-based platform to perform response analysis.

The total simulation time, which includes the time required to receive the system input over

a socket (without HIL), software initialization, hardware computation, and transfer of simula-

tion results back over a socket, shows a speedup of 2× as compared to a similar setup with no

hardware acceleration. The correctness of the simulation output from the hardware has also

been validated with the simulated results from the software-only design.

www.manaraa.com

1

CHAPTER 1. Introduction

Real-time simulation (RTS) is comprised of a set of mathematical techniques used to study

the dynamics of a physical system prior to actual hardware development. It has been utilized

by engineers in various industries such as aviation [54], power systems [22], networking [50],

automotive [44], traffic management [26], and medicine [24]. For example, the rapid growth

in Internet technology has resulted in very complex and widespread networks which are not

appropriate for testing new network protocols and topologies. RTS of such large-scale networks

provide researchers with a high-fidelity and scalable testbed [50]. In biomedical engineering,

tissue deformation due to respiratory motion is an important research area since it can be

used in treatment of several diseases. RTS of respiratory motion for each patient is thus

useful for studying the deformities of the tissue over a period of time [24]. In the development

of off-road vehicles, such as in military and agricultural applications, in order to reduce the

development cost and rework time it is essential to determine the real-time behavior of each

physical component involved in the system.

These dynamical systems are mathematically modelled by determining functions that repre-

sent the behavior of the forces acting upon its components. To simulate them and measure their

mathematical state at different instances in time, these models are integrated using numerical

integration algorithms such as Runge-Kutta (RK1, RK2, RK4), Adams-Bashforth, Adams-

Moulton etc. These algorithms employ either fixed or dynamically changing time steps. The

response generated by the simulation after each time step is considered useful for real-time

analysis only if the computation time for a single iteration remains below or equal to the actual

time being simulated. Another common feature is a user-interactive environment which ensures

that users are able to modify the system input in real-time, thus simultaneously observing its

www.manaraa.com

2

effect in order to make changes to improve the behavior of the system. Virtual Reality (VR)

technology has been employed in setting up such virtual environments, where simulation sys-

tems consist of a user control, simulation model, and display monitor. User-control generates

or sends real-time system input for the simulation model and the display monitor displays its

effect on the physical system being modeled.

Platforms for implementation of simulation models can be traced back to the 1950s when

engineers used analog or digital computers [35] or a combination of both [23], [36] to simulate

systems in real-time. The programming languages used back then were mainly assembly-level

or FORTRAN. With the increase in the complexity of models and lack of flexibility offered

by the analog computers, coupled with the advancements in digital hardware, the simulation

industry has subsequently moved to digital computers and increased usage of programming

languages such as C, C++, and MATLAB. Over the past few years, considerable progress

has been made in RTS of power systems [48], [8], [31] and vehicle systems [1], [34], [37], [7]

using digital computers. However, the general-purpose software processor (i.e. the CPU-based)

simulation of these systems continues to pose a major limitation on the smallest time-step with

which RTS can be achieved. The reduced time-step required to simulate complex and fast

systems imposes a tighter constraint on the time within which the computations have to be

performed. The sequential execution of these computations thus fails to cope with the real-time

constraints which further restrict the usefulness of RTS in a VR environment.

In this thesis, we focus on acceleration of real-time Hardware-in-the-Loop (HIL) simulation

of vehicle systems by implementing the numerical integration algorithms using reconfigurable

hardware, i.e. Field-Programmable Gate Arrays (FPGAs) [16]. FPGAs make an ideal choice

for accelerating this class of algorithms since it provides a platform to parallelize the inde-

pendent computations. Custom pipelined architecture provides an opportunity to improve the

throughput, though at the expense of an initial latency. More work per clock cycle thus re-

sults in a tremendous improvement in the computation time. We aim to improve end-to-end

computation time for vehicle system simulation. This is triggered when a system input is sent

from the user-control to the simulation model and ends when hardware sends the simulation

www.manaraa.com

3

4 8 16 24 32 40 48 56 64 72 80 88 96 104 112
10

1

10
2

10
3

10
4

Number of states

S
im

u
la

ti
o

n
 t

im
e

 (
m

il
li

s
e

c
o

n
d

s
)

8
th

 order linear vehicle model

FPGA Run Time

CPU Run Time

Real Time Requirement

Figure 1.1 FPGA vs CPU vs real-time simulation with different number of states

results back to the display monitor.

The dynamic behavior of a vehicle system is determined by the various forces that act on its

subsystems, such as steering, acceleration, braking, chassis, and tires. These forces in turn affect

the steering direction, stability, velocity, suspension, and displacement of the vehicle either in a

linear or non-linear fashion [25]. RTS of a vehicle system comprising of these subsystems thus

ensures that dynamic behavior of the actual vehicle remains within the safe range of operation.

The vehicle system chosen for hardware implementation in this thesis consists of a steering

subsystem, which defines the directional dynamics of the vehicle in response to the steering

input, affected by the linear and non-linear forces. To simulate the system in real-time with

a time step of 10µs for non-linear forces and 2ms for linear forces, we first used a CPU-based

(MATLAB) simulator. In order to meet the real-time constraints, it was necessary that the time

required for sending the system input from user-control, running the simulation and sending

the output to the display monitor, should in total be less than the selected time step of 10µs.

However, it was observed that the time taken to run the simulation by itself was 13µs. Figure

www.manaraa.com

4

Numerical Integration method

N
E

T

W

O

R

K

N

E

T

W

O

R
K

• Receive
steering

wheel
angle

• Receive

simulation
output

• Compute

position
co-ordinates

HARDWARE INTERFACE

• Read steering wheel angle

• Trigger simulation

• Run for X iterations

• FIFO simulation output

• Send FIFO data

Reconfigurable Hardware (FPGA)

MATLAB/Simulink, C, C++

Figure 1.2 Simulation architecture

1.1 further describes the main motivation behind our use of FPGA technology to implement

the RTS of the vehicle system. It compares the computation time of the vehicle system, acted

upon by linear forces for a simulation period of five seconds on an FPGA running at 55.55MHz

and MATLAB on an Intel Core 2 Quad CPU running at 2.83GHz using the RK4 integration

method. The computation time increases with an increase in the number of states of the

system for both the implementations. However, for the CPU-based simulator the computation

time exceeds the real time when the number of states being modelled for the system is greater

than 88. On the other hand, for the FPGA-based simulator, the computation time remains

well below the real-time constraint. We can intuitively say that a more complex system with

additional subsystems and forces will further add to the time taken per iteration and result in

violation of constraint even with a lesser number of states.

The steering subsystem includes steering valve dynamics acted upon by the non-linear forces

and the lateral dynamics of the vehicle acted upon by the linear forces. The former simulates the

delay between the rotation of the steering wheel and the actual movement of the wheel and the

www.manaraa.com

5

CPU-based

simulator

Software

Design

Analysis

S
o

ft
w

a
re

Software

Synthesis

H
a

rd
w

a
re

Hardware/

Software
Partitioning

Hardware
Design

Analysis

FPGA

Synthesis

System

Integration

System-

level
Analysis

Hardware
Design

Generation

Figure 1.3 Hardware/Software co-design approach for Vehicle System Simulation

latter simulates the movement of the vehicle. The simulation model of the vehicle system thus

consists of a non-linear steering valve model to simulate the valve dynamics and a linear vehicle

model to simulate the vehicle dynamics. For the hardware implementation, we first simulated

the vehicle model with the complete simulation set-up. It consisted of HIL (the actual steering

wheel), which sent the steering wheel angle to the vehicle model, and a display monitor that

rendered the movement of the vehicle, based on the position coordinates, computed using the

output of the simulation. We then added the steering valve model which was connected to

the HIL and received the steering wheel angle instead of the vehicle model. Its output was

hence used to drive the vehicle model. For this thesis we focus on its hardware implementation.

The simulation architecture is as shown in Figure 1.2 and includes the user control modeled

by the HIL, and the simulation model, developed using Very-High-Speed Integrated Circuit

(VHSIC) Hardware Descriptive Language (VHDL), which runs on the hardware, as well as a

display monitor that displays the movement of the vehicle in response to the steering wheel

angle input.

We propose a Hardware/Software co-design approach to accelerate the RTS using a het-

erogeneous parallel architecture. Figure 1.3 provides an overview of our approach. Using this

approach we claim the following contributions to the state-of-art in simulation of vehicle system

dynamics which otherwise fail to meet the real-time constraints using software (CPU-based)

simulator:

www.manaraa.com

6

• A co-design approach for RTS by partitioning the tasks between hardware and software

platform.

• A methodology based on heuristic approach to generate an FPGA-based simulator. The

approach uses hardware component library which contains fast hardware implementations

of non-linear functions and timing information of these components.

• Application of our methodology to generate the FPGA-based simulator for the vehicle

system and various design strategies explored based on our methodology.

• Proof-of-concept of RTS using Hardware/Software based simulator.

Using this approach, we first implemented the RTS for linear vehicle model with a time step

of 2ms. Even though this model when simulated on MATLAB meets the real-time constraints,

to show proof-of-concept and feasibility of real-time simulation using FPGA, we first imple-

mented this simple version. In addition to achieving a speedup of 17× for a simulation time of

20ms, we were successfully able to meet the real-time constraints with HIL and display monitor

in the setup. A more complex steering valve model with a very smaller time step of 10µs was

then added which imposed a tighter constraint on the real-time requirement. A speedup of 3×

was achieved for the steering valve model.

The rest of this thesis is organized as follows. In Chapter II we present an overview of

the dynamic vehicle system simulation. In Chapter III, we explain our co-design approach

for partitioning, followed by our methodology for generating an FPGA-based simulator of the

vehicle system. Before we apply this approach to an example system we present the hardware

implementation details for some commonly occurring non-linear components in Chapter IV.

We apply our methodology to an example vehicle system whose behavior is controlled by

non-linear steering valve and linear vehicle dynamics in Chapter V. We describe its hardware

architecture followed by implementation details and results on the XtremeData platform across

dual FPGAs. This is followed by a brief discussion about the related work in the field of

FPGA-based acceleration methods in Chapter VI. We conclude the thesis with summary of

major accomplishments of our project and an outlook towards future work.

www.manaraa.com

7

CHAPTER 2. Simulation of Vehicle System Dynamics

Vehicle system simulation is one of the essential steps in the overall product development

process, as it allows design engineers to fine tune the design parameters for its individual

subsystems. System simulation also enables engineers to study the effect of selected parameters

on the system through a display connected to the simulator, in order to adjust them to improve

the performance. Dynamics of a subsystem are simulated using its mathematical representation,

the general form of which is given by

ẏ = f(u, y) (2.1)

where ẏ is the slope of the subsystem and function f represents the dynamics of each subsystem

using the state-space form. Function f depends on the system input u, and present state y

of the system. The general state-space form of the models which have a linear effect on the

dynamic behavior of the vehicle is given by

f(ui, yi) = A ∗ yi + B ∗ ui (2.2)

where yi is an N x 1 size vector representing the N states of the system at the present time, A

is N x N state transition matrix that defines the coupling between various states of the system,

ui is the system input vector of size M x 1 and B is an N x M input matrix that defines the

states to which the system input will be applied. For non-linear models, f does not have any

generic representation and varies with different subsystems under consideration. However, for

ease of application, non-linear subsystems may be modified and represented using the general

form given in Equation 2.2.

RTS is performed by integrating f using numerical integration methods, where the output

of the integration defines the state of the system after each time step. The same is considered

www.manaraa.com

8

useful for real-time analysis if the computation time for integrating one time step is less than

the real-time constraint. In other words, given the state of the system yi at time ti, the

time required to compute new state yi+1 at time ti+1 should be no longer than the difference

between ti+1 and ti, which is the actual time step being simulated. For an initial experiment,

the methods were implemented in MATLAB, where it was observed that the computation time

was negatively affected by the increase in the number of computations, which varies with the

choice of numerical integration method, the size of the time step, and the number of physical

states being modeled. It is important to note that though an equivalent C code may be faster

than the MATLAB implementation, we would still observe similar trends, although a more

complex method and model, and a smaller time-step would be needed. We describe below in

brief the effect of each of these factors on the time taken per iteration in a linear model:

• Figure 2.1 and 2.2 shows the steps involved in computing new state of the system using

RK1, RK2, and RK4, and the Adams-Bashforth, Adams-Moulton integration methods,

respectively. The comparison of RK1, RK2, and RK4, shows that as we increase the

order of the Runge-Kutta method there is an increase in the number of function eval-

uations, making the method computation-intensive. Also, we observe that the memory

requirements to store previous iterations data remain approximately same for the three

algorithms since they require data of only the previous time step to compute yi+1. On

the other hand, Adams-Bashforth and Adams-Moulton require fewer function evaluations

at each time step, they need function evaluations at the previous two or three time steps

to compute yi+1. The 4th order Adams-Bashforth needs function evaluations at time ti,

ti−1, ti−2 and ti−3. The 4th order Adams-Moulton is a predictor-corrector method. It

uses Adams-Bashforth to predict yi+1 and then uses function evaluations at time ti+1, ti,

ti−1 and ti−2 to compute yi+1. Thus for higher order systems these type of integration

algorithms become resource hungry owing to the requirement of saving huge data from

previous time steps. This in turn negatively affects the computation time.

• Sharp discontinuities in the model emphasizes the need for a smaller time step to accu-

rately capture the behavior of the system. A smaller time step implies that the simulation

www.manaraa.com

9

RK1 RK2 RK4

yi+1 = yi + k1 * h

where

k1 = f(ui , yi),
yi = State of the system at ti,

yi+1 = RK1 approximation of y(ti+1),
h = Time Step

yi+1 = yi + (k1 + k2) * h / 2

where

k1 = f(ui , yi),
k2 = f(ui + h, yi + k1),

yi = State of the system at t i,
yi+1 = RK2 approximation of y(ti+1),

h = Time Step

yi+1 = yi + (k1/2 + k2+ k3+ k4/2)*h / 3

where

k1 = f(ui , yi),
k2 = f(ui + h/2 , yi + k1/2),

k3 = f(ui + h/2 , yi + k2/2),

k4 = f(ui + h , yi + k3),
yi = State of the system at t i,

yi+1 = RK4 approximation of y(ti+1),
h = Time Step

Figure 2.1 Numerical integration using Runge-Kutta methods

needs to do the same amount of work in lesser time as it did for a larger time-step in order

to meet the real-time constraints. While the total work per iteration remains unchanged,

each of the iterations has a smaller time budget.

• If the time step is kept constant, an increase in the number of states or order of the

system increases the number of computations within each time step. In Equation 2.2,

consider matrix-vector growth of A*yi for both a 4th and an 8th order system. For a

4th order system the computation requires 16 multiplications and 12 additions and for

an 8th order system it requires 64 multiplications and 56 additions. As we increase the

number of states in the system (N) the number of multiplication and additions increase

on the order of O(N2) and O(N2-N) respectively. The number of computations involved

in the multiplication of B*ui also follows a similar trend. While the total time allotted per

iteration remains the same, the amount of computations performed per iteration increases

as on the order of O(4·N2-2·N) with an increase in N.

Figure 2.3 compares the CPU computation time with varying time step and number of

states using different numerical integration methods. The computation time does not include

the time required to receive the steering wheel angle from the HIL, time to compute the position

coordinates, and time to send these coordinates to the display monitor. Figure 2.3(a) shows

the effect of reducing the time step on a 16th order linear system solved using RK1, RK2,

www.manaraa.com

10

yi+1 = yi + (55*f(ui,yi) - 59*f(ui-1,yi-1) + 37*f(ui-2,yi-2) – 9*f(ui-3 , yi-3)) * h / 24

yi+1 = yi + (9*f(ui+1,yi+1) + 19*f(ui,yi) - 5*f(ui-1,yi-1) + f(ui-2,yi-2)) * h / 24

where

f(ui , yi) = function value at time t i f(ui+1 , yi+1) = function value at time t i+1

f(ui-1 , yi-1) = function value at time t i-1 yi = State of the system at t i,
f(ui-2 , yi-2) = function value at time t i-2 yi+1 = RK1 approximation of y(ti+1),

f(ui-3 , yi-3) = function value at time t i-3 h = Time Step

Adams-Bashforth

Adams-Moulton

Figure 2.2 Numerical integration using Adams-Bashforth and Adams-Moulton Method

RK4, Adams-Bashforth, and Adams-Moulton algorithms. It was observed that as the time

step is reduced, the time taken to simulate for five seconds increases, for a fixed set of design

parameters. When the time step is reduced to .2ms the simulation fails to meet the real-time

constraints for all the algorithms. Figure 2.3(b) shows the effect of increasing the number of

states with a fixed time step of size 1ms. When the number of states are increased to 72, Adams-

Bashforth and Adams-Moulton fail to meet the constraints as the overall computation time

surpasses the real time of 5s. When the number of states are increased to 112, all the Runge-

Kutta algorithms fail to meet the constraints. These results drive our research to alternate

platforms for simulating more complex vehicle dynamics in real-time.

For our work, we considered an 8th order steering valve and vehicle model. The vehicle

model, as can be seen in Figure 2.3(a), is able to generate the simulation output in real-time

in MATLAB. However, the steering valve model exceeds the real-time constraint by 3µs and

forms the major computational bottleneck to run the real-time simulation. The parallelism

involved in the matrix-vector multiplications of Equation (2.2) makes them a good candidate

for acceleration using FPGA hardware. The computation of the position coordinates, on the

other hand, is a two-step process with simple scalar multiplications and can remain in software.

This forms a part of our system-level analysis. As mentioned previously, we developed a

methodology to perform hardware design analysis. It involves analysis of the factors that affect

the hardware design and involves the actual design generation followed by hardware simulation

www.manaraa.com

11

���
���
��

����
�	

�

��

Step size (milliseconds)

RK1

RK2

RK4

Adams-Bashforth

Adams-Moulton

214

212

28

210

26

22

24

20

(a) Effect of time step using a 16th order linear system.

0

1

2

3

4

5

6

7

8

9

10

8 16 24 32 40 48 56 64 72 80 88 96 104 112

T
im

e
 (
s
e
c
o

n
d

s
)

Number of States (N)

RK1

RK2

RK4

Adams-Bashforth

Adams-Moulton

(b) Effect of number of states using a time step of 1
ms.

Figure 2.3 Effect of step size and number of states on the CPU computation time for RK4
integrator

to check for functional correctness. For software implementation the aim is to minimize the

time between the send and receive data commands to and from the hardware. Apart from

the interface delay between the hardware and the host machine and the actual simulation run

time which form a part of the hardware partition, the software design should be efficient with

network communication and computation.

www.manaraa.com

12

CHAPTER 3. Design Methodology

The first step of our methodology is the system-level analysis to determine the partitions

and we consider factors that affect the partition of the design across hardware and software.

The first factor is the computation time of different components of the simulation model and

the second factor is the frequency of communication between different components. To effi-

ciently utilize both the hardware and software resources we obtain an initial partition such

that the computation-intensive part of the simulation model and modules which can benefit

the most by the parallel architecture are implemented on the hardware and the rest on the

software. For example, a simulation model that involves a square-root operation followed by

an expensive RK4 integration method, we obtain a partition which implements the square-root

on the software and the integration method on the hardware. While considering the second

factor on the same example, if the two partitions communicate only after a certain interval

of time the partition might still be beneficial. However, if there is continuous exchange of

data between the two operations then this partition will be quite expensive due to increased

communication delay between hardware and software. Based on the components selected for

either hardware or software implementation we first discuss the hardware partitioning followed

by software partitioning.

3.1 Factors affecting hardware partitioning

After hardware/software partitioning, the implementation on the hardware itself needs to

be partitioned across multiple FPGAs. The hardware/hardware partitioning is governed by

three factors: accuracy/precision in the simulation results, space occupied on the hardware,

and the time required to complete the computations of a single time step. The hardware design

www.manaraa.com

13

is thus generated based on variation in each factor with respect to another which we discuss in

this section and then present the methodology taking into consideration different variations.

The accuracy/precision and hardware resource utilization (RU) are affected by the manner

in which the data is represented on the hardware. For this work we use fixed-point represen-

tation [52], described in Figure 3.1(a), which consists of fixed number of integer and fractional

bits before and after the fixed-point. Given a signed number P(M,F), M is the total number of

bits and F is the number of fractional bits, the integer bits I is equal to M-F-1 and p represents

each bit of the number P in the binary system. The most significant bit (MSB) represents

the sign bit. The integer bit position starts at 0 and progresses by 1 towards the left of the

fixed-point and the fractional bit position starts at -1 and progresses by -1 towards the right

of the radix. In binary number system, the weight of the each bit position is higher than the

weight of the previous bit position by a factor of 2. So, weight of the integer bits grows such as

20, 21,...., 2M−F−1 whereas weight of the fractional bits grows such as 2−1, 2−2,...., 2−F . Thus,

to obtain the value of a binary number given a fixed-point notation, each bit is multiplied by

the weight associated with that bit position as shown by Fixed-Point value in Figure 3.1(a).

The accuracy is thus determined by the number of I bits available whereas the precision is gov-

erned by the number of F bits selected for fixed-point representation. We explain this concept

with an example in Fixed-Point example of Figure 3.1(a) for number P=2.654, given the total

number of bits M=8 for different number of F bits. For F=4 bits and I=3 bits, leaving beside

a sign bit, the fixed-point representation of the number is 2.625. As we increase the number

of bits for F=5 , I=2 we achieve a closer fixed-point value of the number as 2.656. However, a

further increase in the number of F bits will leave only a single bit for the integer value which

will affect the accuracy. This also affects the accuracy/precision in the arithmetic operations

involving the fixed-point operands. The operations may generate results of length greater than

either of the operands. For example a fixed-point multiplication involving operands each of

length M=8 bits, generate results of length 2*M-1=15 bits. To maintain uniformity in the way

the operands and result of the arithmetic computations is represented on the hardware, we

convert this result to a length of M bits. The required multiplication result lies in the first I

www.manaraa.com

14

Fixed-Point representation

FIM pppppppppp
−−−−−−

......... 321012311

Integer Value Fractional ValueFixed-PointSign bit

Fixed-Point value

∑ ∑−−

=

−

=

−−−

+=

1 1

0

)(
22

FM

Fi

F

f

f

fF

i

Fi

v ppP

Fixed-Point example

656.2,10101.010)5,8(

625.2,1010.0010)4,8(

654.2

==

==

=

v

v

PP

PP

P

(a) Fixed-Point notation

375.1),0110.0001()4,8(

375.2),0110.0010()4,8(

4.1,4.2

22

11

21

==

==

==

v

v

PP

PP

PP

Fixed-Point representation for M=8 and F=4

265.3,36.3 2121 =×=× vv PPPP

)01000100.0000011()4,8()4,8(21 =×PP

Fixed-Point multiplication example

Fixed-Point arithmetic for multiplication

),1(),(),(2121222111 FFIIPFMPFMP +++=×

25.3=

(b) Fixed-Point arithmetic

Figure 3.1 Fixed-Point representation

bits to left of the radix and first F bits to right of the radix. The truncation of 2F to F bits

results in precision loss whereas reduction of 2I to I bits may result in a completely inaccurate

result if I bits are not sufficient to represent the result. As seen in Figure 3.1(b), the M bits of

multiplication represents 3.265. If we increase the number of F bits for each value, the result

gets closer to 3.36. To accurately represent the result a minimum number of I bits are required.

For hardware implementation of the simulation model, the data values such as coefficient

matrices, vectors, parameters and computation results are represented using this fixed-point

notation. To determine the effect of the number of bits on the hardware RU we first look

at the FPGA architecture. A conventional FPGA consists of an array of logic blocks, I/O

pads and routing channels. The logic blocks are connected using routing channels which also

terminate into I/O pads, connected to the actual pins on the FPGA device. Each logic block

can accommodate only a specific number of input bits. As the number of bits is increased, the

number of logic blocks being used increases and so does the routing between the logic blocks.

The number of I/O blocks are limited by the number of pins and thus restrict the number

www.manaraa.com

15

of routing channels terminating on these pins. With limited number of these resources there

is thus a restriction on the number of bits that can be accommodated on the hardware. A

straightforward conclusion that can be drawn about the relation between accuracy/precision

and space is that as we increase the number of bits to achieve between accuracy/precision in

the simulation results, the space required increases.

The relation between time and space is based on the parallelism that can be explored in

the FPGA-based simulator. If all the independent computations of the CPU-based design

are implemented concurrently, then the resulting FPGA-based simulator would complete a

single iteration in as minimum a time as possible. However, the parallelism comes at the

expense of hardware resources. For example, if a hardware component “X” takes 10 cycles to

compute the result and we need to implement 10 such components we have several options

based on our requirement. First, we can concurrently run all the components thus obtaining

the output from all in 10 cycles. This would be the fastest implementation but most resource

hungry since each component would require independent resources. Second, we can serialize the

computation such that when one component completes the execution only then the next one is

executed. This would be the slowest and the hardware RU will be equivalent to that of single

largest component. Third, we can pipeline the implementation such that a new computation

is invoked every cycle. After an initial latency of 10 cycles, result will be obtained every cycle

thus increasing the throughput. The hardware resource utilization will be somewhere between

that of the earlier two implementations.

The relation between accuracy and time is based on variation in time with change in the

number of bits. To explain this relation we take a simple example of addition. In digital logic,

the hardware operations occur at the bit level using logic gates which are associated with certain

amount of delay in transfer of data from input to the output port. Figure 3.2(a) illustrates the

addition of two 1-bit numbers and Figure 3.2(b) illustrates the addition of two 2-bit numbers.

In the former, we add two 1s represented by a single bit 1 and the delay associated in obtaining

the final result is the delay through either of the gates, whichever is longer. In the latter, we

add 3 and 1 represented by a 2-bit number 11 and 01 respectively. The delay d1 is associated

www.manaraa.com

16

G1

G2

cin1

cout1

a1

b1

sout1

d1

(a) Addition of two 1 bit numbers

G11

G12
G21

G22

cin1

cin2cout1

a1

b1

a2

b2

cout2

sout2

sout1

d1 d2

(b) Addition of two 2 bit numbers

Figure 3.2 Effect of number of bits on computation time

with the addition of first two least-significant bits. As per the addition rules, carry generated

from the addition of these two bits has to be added with the bits in the next position. Thus,

a valid result is available at the output of gates G21 and G22 only after delay d1 + d2 which

increases with the increase in the number of bits. Thus, the number of bits affect the delay

associated with generating the output of the individual components whose implementation vary

with the number of bits.

The methodology to generate the FPGA-based simulator, based on the factors discussed, is

shown in Figure 3.3. In the hardware design analysis phase, we first analyze the requirements

i.e.the required bit combination, the time taken to complete a single iteration and the hard-

ware RU. The hardware design generation phase uses this information to generate the actual

hardware design. The methodology has been proposed in the embedded systems literature

[13, 27, 47] for Hardware/Software partitioning. It allows the designer to make and compare

different design decisions for the physical system being simulated. It provides a systematic way

of making changes in the hardware design and paves the way for automating the process for

other vehicle systems. The steps shown in Figure 3.3 are performed manually and the automa-

www.manaraa.com

17

Generate
fCPU-based

simulator

Is RTE<

RTC

Is RE<
PRE?

Decrease

bit-width
representation

Is RE<
PRE?

Choose
previous bit-

width
representation

Is RU<AR?

Serialize all

components
Is RU<AR? Is RTE<

RTC?

Stop, Design

cannot meet
AR

Parallelize

next smallest
component

Is RTE<
RTC?

Is RU<AR?

Stop, Design

cannot meet
AR/RTC

Continue,

Generate FPGA-
based design

Stop, Design

cannot meet
PRE

Stop, Design
can not meet

RTC

Yes

No

NoYesNo

Yes

Yes

No

Yes Yes

No

No

No

NoYes

Yes

A
c

c
u

ra
c

y
 &

ti
m

e
 a

n
a

ly
s

is

S
p

a
c

e
 &

ti
m

e
 a

n
a

ly
s

is

RE: Relative Error AR: Available Resources RTE: Real-Time Estimate

PRE: Permissible Range for RE RU: Resource Utilization

1 2

3456

7

8 9 10

11 12 13

Figure 3.3 Heuristic approach for hardware partitioning

tion of this approach will form a part of our future research work. Except for the automation

of Simulation successful step since that decision is based on the results from the Modelsim

simulator (used for simulating VHDL/Verilog designs) which can be validated visually.

3.2 Hardware Design Analysis

The first step of the methodology involves selection of the numerical integration method and

design of the CPU-based simulator. In this work we focus mainly on the simulation of vehicle

systems using the RK4 integrator. Other integrators such as RK1, RK2, Adams-Bashforth and

Adams-Moulton can also be used with our methodology; we leave this analysis to be part of

our future research. The input to the hardware design analysis phase is thus the CPU-based

simulator which uses the RK4 integrator, Permissible Relative Error (PRE) in the simulation

www.manaraa.com

18

output, the Real-Time Constraint (RTC) and the available hardware resources (AR) since the

platform is pre-decided, with an assumption of aggressively parallelized design and maximum

number of bits for fixed-point representation. Ideally, the value of PRE should be set by the

engineers who design the simulation model. They should be able to determine the acceptable

relative error in the simulation results.

3.2.1 Accuracy/Precision and Time Analysis

Step 1 : To implement the methodology described in Figure 3.3 we need a model which can

give us an estimate of the required bit combination, time taken to complete a single iteration

and the hardware RU. These estimates can be obtained by having a model which can emu-

late the FPGA computation process and we call this a fixed-point CPU-based (fCPU-based)

simulator. We first design a software component library which contains equivalent software

(MATLAB) representation of all the components in the hardware component library. Each

functionality is implemented using the same techniques we used to implement them on the

hardware. The functionalities in the CPU-based simulator are then replaced with their mod-

ified implementation from the software component library. For example, instead of using the

MATLAB built-in ode45 function for RK4 integration, we implement the algorithm for RK4

(as shown in Figure (2.1)) in MATLAB and use the same for the hardware implementation.

Similarly, as will be explained in Section 4.2, we implemented square root on hardware using

Goldschmidt’s algorithm [42]. Instead of using the built-in MATLAB square root function we

implement the Goldschmidt algorithm in MATLAB. In addition, the arithmetic operations in

the modified implementation are also done using fixed-point notation and are parametrized

for different bit combinations. Since the algorithms used are same as those used for hardware

implementation, the architecture is close to that of the FPGA-based simulator. The computa-

tion process also emulates the FPGA computation thus making the fCPU-based simulator an

appropriate model to estimate the required bit combination that affects the accuracy/precision

and the hardware RU.

An alternate to generating an fCPU-based simulator is to directly generate the FPGA-based

www.manaraa.com

19

simulator, which uses the components from the hardware component library. These components

are highly parameterized and read static data stored in the FPGA memory whose storage

space varies with the change in the bit combination. The bit combination that satisfies the

accuracy/precision and resource requirement for one component may not satisfy for a different

component. Thus, after generating these components for a specific bit combination and a

wrapper to connect them, it becomes necessary to validate the results from each component

in the Modelsim. Without any criteria to select the bit combination, we may have to iterate

through the entire process of selecting the bit combination, generating and validating data

from each component in Modelsim several times before we achieve the correct bit combination.

For complex systems with large number of components this process will involve a substantial

amount of effort, thus the need for an fCPU-based simulator.

Step 2 : A hardware equivalent simulation model is expected to speed-up the computation

process via parallel architecture of the hardware. However, before we actually generate the

design we estimate whether the hardware is capable of meeting the RTC even of the completely

parallelized design. A parallelized design assumes that all the independent computations are

implemented in parallel optimizing highly for time. Thus, the time obtained from such a

design is the estimate of the minimum possible time which the hardware will take to compute

the output of a single iteration.

The estimation of time is a static process based on pen and paper analysis. The fCPU-based

simulator gives us the hardware components required for FPGA-based simulator. For each of

the independent components in the hardware component library, we also determine the number

of cycles each component take to generate the output. We use the cycle information of each

component to compute the number of cycles taken by the whole design to generate the output,

taking into consideration the parallelism employed. Assuming different clock frequencies for

the hardware, we can determine RTE of this design for these clock frequencies. If the RTE is

more than the input RTC, the hardware will not be able to meet the RTC. This is because

the RTE is being compared against the minimum possible time that an FPGA-based simulator

will take by exploring all the parallelism in the model. If the time taken remains within the

www.manaraa.com

20

RTC, we check for the RE constraint in next step.

Step 3 : In Section 3.1 we discussed that the number of bits affect the accuracy/precision

with which the data values and computation results are represented on the hardware. To obtain

an estimate of the required bit combination without generating the FPGA-based simulator, we

emulate the hardware computation process in the fCPU-based simulator. This is achieved by

converting all the data values at each computation step in the fixed-point format of length

I+F bits. The converted values are equal or close to the true values if the bits are sufficient.

The local truncation error due to each conversion and global propagation error due to previous

conversions thus results in an error in the final simulation output after every iteration. Since

the fCPU-based simulator is generated using algorithms used for FPGA-based simulator the

conversion accurately models the hardware computation process and the error generated from

this process can be considered as a close estimate of the RE that will be generated from the

FPGA-based simulator.

To compute the RE between the fixed-point and the original output for fixed number of

iterations we first compute the RE for each state in the system. The RE across all the states

is averaged for every iteration which is further used to compute the RE across fixed number of

iterations. For a fixed range of PRE and given the maximum number of bits for representation

if the RE of the design fails to meet the PRE constraint we cannot proceed to the next step.

Step 4, 5 and 6 : If the constraints are met, we further optimize the design by reducing the

bit-width combination such that the RE remains within the PRE. We first reduce the number of

I bits while keeping F=64. After obtaining the number of sufficient I bits we reduce the number

of F bits until it fails the constraint. However, at this point we would like to mention that the

process of estimating the bit-combination using fCPU based simulator is highly dependent on

the number of iterations we run the simulation for. As we increase the number of iterations, the

number of sufficient bits that satisfy the PRE criteria may increase. So, the selected bit-width

combination may not be the final estimate that would represent the values close to the required

values on the hardware.

www.manaraa.com

21

3.2.2 Space and Time Analysis

Initially the timing analysis is done assuming an aggressively parallelized model, which if

implemented on hardware would utilize the maximum resources available. We optimized the

design for time and determined if the model meets the RTC. We now optimize the design for

space and determine if the model meets the AR constraint.

On the hardware, as the RU increases, the area covered by the design increases and so

does the path traversed by the clock. This in turn lowers the overall frequency at which the

design can run. During space analysis, we thus optimize the design for space by serializing or

pipelining the components. However, optimizing for space in turn increases the time taken to

run a single iteration. Following our example in Section 3.1 where we considered 10 instances

of a component “X”. Now instead of all the computations being done in parallel we execute one

computation followed by another. The serialization causes the output from the last computation

to be generated in 100 (10x10) cycles though it will utilize the minimum resources since we

use the same componenet but with different input. We can also pipeline the input such that

it receives a new input every cycle. Since response to each input takes 10 cycles, the time

taken to obtain the output for the last computation will be 19 cycles after the first input

was received, as opposed to 10 cycles when all were implemented in parallel. The hardware

RU reduces drastically though still more than a completely serialized design. Based on these

optimizations, we obtain an estimate of the required resources and make a decision, whether

or not, the design will fit on the hardware.

Before we proceed to the next step, we present our approach to estimate the hardware RU

of the design. The components present in the hardware component library are independent

entities that can be plugged into any design as long as the input and output ports are correctly

mapped. We ran the hardware synthesis for all the components in the library and obtained

their hardware RU for different bit combination as shown in Figure 3.4. The synthesis was

run on Altera’s Stratix III board so the RU is in terms of Altera’s Adaptive Logic Modules

(ALMs). An equivalent number of 6-input LUTs on Virtex-5 FPGAs of Xilinx can be obtained

using the relation given in [33].

www.manaraa.com

22

0

10

20

30

40

50

60

12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e
s
o

u
rc

e
 u

ti
li
z
a
ti

o
n

(T
h

o
u

s
a
n

d
s
 o

f A
L

M
s
)

Integer (I) bits

F=12

F=16

F=20

F=24

F=28

F=32

F=36

F=40

F=44

F=48

F=52

F=56

F=60

F=64

Fractional (F) bits

0

2

4

6

8

10

12

14

16

18

20

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e
s
o

u
rc

e
 u

ti
li
za

ti
o

n
(T

h
o

u
s
a
n

d
s
 o

f A
L

M
s
)

Integer (I) Bits

F=8
F=12
F=16
F=20
F=24
F=28
F=32
F=36
F=40
F=44
F=48
F=52
F=56
F=60
F=64

Fractional (F) bits

(a) RK4 (b) Look-up Curve

0

10

20

30

40

50

60

70

80

90

100

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e
s
o

u
rc

e
 u

ti
li
za

ti
o

n
(T

h
o

u
s
a
n

d
s
 o

f A
L

M
s
)

Integer (I) Bits

F=8
F=12
F=16
F=20
F=24
F=28
F=32
F=36
F=40
F=44
F=48
F=52
F=56
F=60
F=64

Fractional (F) bits

0

2

4

6

8

10

12

16 20 24 28 32 36 40 44 48 52 56 60 64

R
e
s
o

u
rc

e

U

ti
li
za

ti
o

n
(T

h
o

u
s
a
n

d
s
 o

f
A

L
M

s
)

Integer (I) Bits

F = 16

F = 20

F = 24

F = 28

F = 32

F = 36

F = 40

F = 44

F = 48

F = 52

F = 56

F = 60

F = 64

Fractional(F) Bits

(c) Square Root (d) Trigonometric

Figure 3.4 Hardware resource utilization for RK4, Look-up Curve, Square Root and Trigono-
metric Components

Step 7 : For space analysis, we first check if with the selected bit-width combination from

the previous step, the design meets the AR constraint. We use the fCPU-based simulator to

determine the components that make up the FPGA-based simulator and use the graphs in

Figure 3.4 to determine their RU for the selected combination. We compare the RU for the

whole design with the AR input for the selected platform. If the constraint is met, we use the

automated scripts to generate the VHDL-design for the selected components with the selected

combination. If it does not, we perform the space optimization and start with a completely

serialized design in Step 8.

Step 8, 9 and 10 : In Step 1 we started with an aggressively parallelized design which

was optimized for time to check for the RTC and obtain an estimate of the speed-up that

can be achieved. To optimize for space we serialize/pipeline the components such that new

computation starts either after completion of the previous computation or a cycle delayed.

This process reduces the RU since the number of computations being done in parallel have

www.manaraa.com

23

been reduced. However, to obtain a lower limit on the hardware RU of the design, we start

with a design that is completely serialized for which we again check whether with the selected

combination, the design that has been optimized completely for space is able to meet the AR

constraint in Step 9. Since we started with a serialized design, the estimate of RU is the

minimum resources that a design is expected to consume and if the constraint fails, it is not

possible to proceed further. If the constraint is met we then check if the new design meets the

RTC in Step 10. As mentioned earlier, the serialization affects the RTE and if the completely

serialized design meets RTC we use automated scripts to generate the VHDL-design for the

selected components with the selected bit-width combination. If the RTC is not met, we still

have the option to parallelize components in Step 11.

Step 11, 12 and 13 : In Step 8, we made an assumption of completely serialized design and

obtained the minimum resources that a design would consume. Since the RTC is not met,

while still optimizing for space, we parallelize the component which consumes the minimum

resources and thus results in minimum increase in the overall RU. We check for RTC in Step

12 and iterate through Step 11 and Step 12 until we meet the RTC. As discussed earlier as we

parallelize components RTE reduces but the RU increases. So having met the RTC, we check

for the RU constraint. If the constraint still fails, we cannot proceed further to generate the

FPGA-based simulator else we use the automated scripts to generate the VHDL-design for the

selected components with the selected combination.

To meet the real-time constraints the simulation results should be available at the host, for

further processing, within or even less than the RTC. This is necessary because the time taken

to complete an iteration includes the computation as well as communication delay. So far, we

have been discussing the RTE as the time taken for computation on the hardware. However,

we also need to include the time to transfer the data back and forth between the hardware and

the host. The time only varies with the amount of data being transferred. We thus need an

interface, which provides sufficient bandwidth and minimizes the latency in sending the data

back and forth between the host and the hardware. Since the Hardware/Software partitions

have already been decided, we know the amount of information that needs to be exchanged

www.manaraa.com

24

between the two partitions. We use this information to determine the required bandwidth of

the interface and compare it with the bandwidth of the selected platform. We also compare the

bandwidth of different interfaces available with different platforms and show that the choice of

platform is the best option for our work. The interface details are also used in the software

design phase explained in section 3.4.

3.3 Hardware Design Generation

An important aspect of the hardware design methodology is automatic generation of the

design models based on different design decisions. The design decisions in this case include the

selection of appropriate bit combination that meets the accuracy, time and space criteria. The

advantage of having this automation is that the designer does not need to create a hardware

design every time a design decision is changed. This allows the designer to focus on making the

best design decisions without having to devote much time in creating the designs every time a

change is done.

3.3.1 Design Generation

The VHDL design for each component is highly parametrized and pipelined. The parame-

ters for each component, and those specific to vehicle system simulation, are saved as constants

in the parameters file in fixed-point format based on the bit combination. To use these con-

stants, the components need to include the parameters file while implementing the design.

However, the selection of appropriate bit combination is an iterative process during which the

parameters and the VHDL design have to be regenerated. For a complex system, with numer-

ous components this step would require the designer to create the design for all the components

every time the bit combination changes. Thus, to automate the process of design generation,

we designed the MATLAB scripts which take the bit combination and order of the system (if

required) as input to generate the parameters file and VHDL design for components.

This step takes the bit combination, type of components involved and information about the

serialization or pipelining of the components as input. Based on the bit combination and the

www.manaraa.com

25

type of components, we use these scripts to generate the VHDL design of different components.

The wrapper, that intelligently connects these components is manually designed based on the

information about serialization or pipelining of the components. Moreover, the actual decision

whether the bit combination is sufficient, is made only after the next step i.e. design verification,

where we visually compare the output from each component with the output from the CPU-

based simulation model. If the verification fails we change the bit combination and start from

step 7 of the hardware design analysis. The automatic generation of the components based

on different bit combination thus reduces the amount of time the designer needs to spend to

generate a new design and focus on analysing the effect of different design decisions.

3.3.2 Design Verification

An important check of functional correctness of the FPGA-based simulator is through

Modelsim simulation. This is a design verification step, where we compare simulation output

from Modelsim, with that from the CPU-based simulator. Since there are different components

connected together it is essential to validate that data from these components is represented

correctly. Assuming the design meets the functionality criteria, an insufficient number of bits

may result in a mismatch of the final simulation output if the output from any component is

incorrect. After analyzing whether the mismatch is due to insufficient number of I or F bits,

we increase the bits accordingly and go back to step 7 of the hardware design analysis phase.

In addition to data validation, simulation is an important phase to check the speedup that

might be expected from the present implementation. Once the Modelsim simulation shows a

perfect match with the results from CPU-based simulator we generate the programming file

and integrate it with the software design to run RTS.

Another reason that the design verification is important is that the process of creating a

programming file for FPGA is a time consuming process. It includes synthesis, translate, map

and place and route and the time taken may increase with the size of the design. It is highly

unlikely that the hardware will work as expected in the first attempt and thus investing time

to generate a programming file without verification is not recommended.

www.manaraa.com

26

3.4 Software Design Analysis

The software design analysis phase is based on the platform selected in the platform analysis

phase. This is because the width of the interface governs the alignment and data format in

which the system input should be sent to the hardware and the simulation output should be

received back from the hardware. With focus on vehicle system simulation, the software design

should be able to perform the following tasks for the complete HIL RTS.

• Receive the system input from the HIL

• Send the system input to the hardware

• Receive the simulation output from the hardware

• Convert the hexadecimal format of the output to the decimal format

• Perform software computation if any

• Send the simulation output to the VR display

As we will see later, the system input i.e. the steering wheel angle, is assumed to change

every 20 ms. The software should thus be able to perform the above tasks which includes

the network delay in receiving the system from HIL, delay in sending the system input to the

hardware and receiving the output from the hardware, computation time on the hardware and

software, network delay in sending output to the VR display, within this real-time. The fast

computations on the hardware cause the simulation to run faster than the real-time. Thus,

to emulate the real-time scenario we start the timer in the software just before it receives

the system input. The hardware runs the simulation for 20 ms sends the output back to the

software and stalls until it receives the new system input. On the software side, timer stops

after sending the simulation output to the VR display so that the time to send the data over

the network is included. At this point if the difference between stop and start timer is less than

20 ms, we invoke a sleep command to stall the software for the remaining amount of time i.e.

20 - (stop-start).

www.manaraa.com

27

As the complexity of the physical system being simulated increases, the amount of work load

for either hardware or software partition also increases. Considering the RTC, it thus becomes

essential to develop an efficient software design that minimizes the time spent between the start

and stop timers, apart from the hardware computation involved.

www.manaraa.com

28

CHAPTER 4. Hardware Component Library

The IP core components provided by the FPGA vendors for non-linear functions, offer

limited support with respect to type and length of input data. For example the top two FPGA

vendors, Xilinx and Altera, both provide an IP core for square root operation. However, while

the former supports only 48-bit wide input, the latter supports 256-bit wide integer input.

Similarly, for trigonometric functions, Xilinx supports only 48-bit wide input whereas Altera

doesn’t provide such support. In addition, usage of IP cores takes away the benefit of design

portability. A design developed using Altera’s IP cores is not easily translated to a Xilinx

platform and vice-versa. To overcome these limitations, we developed our own components for

non-linear functions which support 128-bit (maximum of 64 bits for I and F each) input widths

that are portable across different platforms.

Our current hardware component library provides support for look-up curve, square root,

trigonometric functions, and a RK4 integrator. In this chapter, we discuss the algorithm and

architecture of these components, compare our approach with previous implementations in the

research literature and list the advantages offered by our implementation.

4.1 Look-up Curve Component

4.1.1 Principle

The look-up curve component estimates the value of a function at a point input given the

value of the function at two precise data points X1 and X2. It reads the function values at

known data points from a look-up table and uses linear interpolation method given by the

www.manaraa.com

29

equation below to obtain this estimate.

Estimate =

(

Y2 − Y1

X2 − X1

)

∗ (input − X1) + Y1 (4.1)

where the input lies between X1 and X2, Y1 and Y2 are the corresponding function values.

For hardware implementation we split the look-up table into two tables such that one

contains the slope estimate as given by

Slope =

(

Y2 − Y1

X2 − X1

)

(4.2)

and another contains the corresponding Y values. As we will see later, we do not need to store

X values, since it can be easily computed except for the minimum, Xmin and maximum, Xmax

which are saved in the parameters file. For any given input, the two X values between which

the input lies is computed using formula given below

index =

⌊

input − X0

∆X

⌋

(4.3)

where ∆X is the difference between the equally spaced X values, input - X0 determines how

far the input is from the first X value, X0. Given three known values i.e. input, X0 and ∆ X

we can compute the index. We use the same formula to compute X1 by replacing input with

X1. The index is used to compute the address at which to access the two tables.

4.1.2 Implementation

In a five stage pipelined architecture shown in Figure 4.1, a valid computation starts when

it receives a start signal. In the first stage it checks if the input is within the maximum and

minimum range of the X values. It also computes the index using Equation (4.3). In the

second stage, the index is pipelined for one more stage and the integer bits of the index are

converted to an unsigned format to compute the address for reading the two tables. In the

third stage, while the memory is being accessed, we compute X1 using formula given below and

also compute the difference input - X1.

X1 = X0 + ∆X ∗ index (4.4)

www.manaraa.com

30

54321

2 3

1

1

clock

Check
range

and

compute
index

Compute
address

and

read
memory

Compute

estimate
Pipeline

Compute

x1,

input-x1

Index

2

1 2

1 2

4

3

3

5

5

4

3

4

5

4

5

Figure 4.1 Pipeline of Look-up Curve Component

In the fourth stage, we have all the values to execute Equation (4.1). The value of input -

X1 is available from the previous stage, Slope and Y1 are read from the memory. The final

output,Estimate, is pipelined for one more stage and is available at the end of fifth stage. The

pipelined implementation can accept a new input value every cycle. After an initial latency of

5 cycles, our component generates new output every cycle.

An important optimization achieved by splitting the look-up tables into two is that we

save a delay of two cycles in computation of the estimate which will be explained in Section

4.3. Further, the implementation is highly parametrized such that all the parameters which do

not change during the simulation are saved as constants in the parameters file. The division

by a constant value of ∆X in Equation (4.3) is implemented by saving its inverse in this file.

When the bit combination changes, the auto-generation scripts for VHDL design generate these

constants and look-up tables in the fixed-point format for the selected combination.

4.2 Square-Root Component

The algorithms for hardware implementation of square-root fall in two categories - sub-

tractive and multiplicative [28], [41], [4]. Subtractive or direct methods are based on the

www.manaraa.com

31

conventional procedure of computing square-root by hand, where each bit of the result is com-

puted in one clock cycle. This method is efficient for small number of input bits but the initial

latency is very high for higher number of input bits, which is 128 in our case. The multiplica-

tive methods (Newton-Raphson and Goldschmidt algorithms) on the other hand, iteratively

refine the initial approximation to compute the square-root. Though the algorithms exhibit a

quadratic convergence, they are expensive in terms of resource utilization. Since our focus is on

acceleration of the RTS, where speed is of prime importance, we choose the latter category for

our implementation. The Newton-Raphson method involves dependencies between its succes-

sive operations causing an uneven pipeline structure. We thus use the Goldschmidt algorithm

[42].

4.2.1 Principle

The square root function is implemented using Goldschmidt algorithm [42] which is efficient

in computing square root of values close to 1. We base our idea on the fact that any number can

be represented in the form 2n x a where n is an integer and a is a number close to 1. 2n is the

largest power of 2 that appears in the number, square root of which is obtained from a look-up

table that holds pre-computed square root values. The square root of a is determined using

Goldschmidt algorithm. The square root of the original number is thus the product of the two

square root values. The Goldschmidt algorithm is a three step process, described in Equation

(4.5) where x0 and y0 are set to the initial guess value a. When the process is executed for few

iterations as xi converges to 1, yi converges to
√

a.

ri = (3 − xi)/2 (4.5)

xi+1 = xi ∗ ri ∗ ri (4.6)

yi+1 = yi ∗ ri (4.7)

4.2.2 Implementation

The look-up table implementation is based on the bit combination selected for FPGA

implementation. Given the number of I and F bits, the maximum and the minimum number

www.manaraa.com

32

that can be represented in the power of 2 are 2−F and 2I−1 respectively. The look-up table

stores the square root of the following numbers 2−F , 2−F+1, 2−F+2,, 20,, 2I−3, 2I−2,

2I−1. To show that the look-up table returns the correct square root value, we introduce 2

index values - The normal (n) index and the fixed-point (fp) index. The former is the index

interpreted by the hardware for any binary number and also the address at which to read the

look-up table. The latter is the index interpreted for fixed-point arithmetic and also the index

of the numbers whose square root values are stored in the look-up table.

Figure 4.2 explains the methodology to obtain the number 2n, its square root and a for

computing square root of number 2.5 with a bit combination of 4 and 4. In Figure 4.2(a), the

table on left hand side gives binary representation of the number along with n index and fp

index values. The table on right hand side is the look-up table generated for the selected bit

combination. To determine the largest power of 2 which is close (and can be represented with

the given bit combination) to the number we check n index and fp index corresponding to the

first occurrence of 1 from the most significant bit (MSB). The values are 5 and 1 respectively.

The look-up table at address 5 stores the square root of 21, which is the largest power of 2 that

appears in the number. Figure 4.2(b) generates a number close to 1 by shifting the number

such that the first occurrence of 1 from MSB now lies at the 0th position of I bits. The number

of bits to shift is thus computed by subtracting F bits from the n index value. If the input is

less than one, n index will be less than F bits and the negative difference value will shift the

input left else to the right. In this case number is shifted right by 5-4=1 bit.

During first stage of the pipelined architecture, we compute the address to access the

memory, which stores the look-up table. The address is pipelined to be used in the later stages

to read the memory. Initial guess value a for the Goldschmidt algorithm is also computed in

the same stage. ri is computed in the second stage followed by computation of xi+1, yi+1 in

the third stage. The Goldschmidt algorithm is executed for five iterations resulting in total

run time of ten cycles. Since the output from Goldschmidt is not available until end of the

eleventh stage, a valid read enable signal is sent to the memory in the tenth stage with the

pipelined address value computed in the first stage. By the end of eleventh stage we receive

www.manaraa.com

33

1

0

3

2

-2

-1

-3

-4

Numberfp index n index

0

0

0

1

0

1

0

0

0

1

2

3

4

5

6

7

-4

-3

-2

-1

0

1

2

3

SQRTaddress

20

1

2

3

4

5

6

7

√
2√
2√
2√
2√
2√
2√
2√

Look-up tableIndex mapping

(a) Determine 2
n and it’s square root

Number = 1.25

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0 0

I=4 F=4

Number = 2.5

Right shift by

(n index-F)

Shift in 0s in MSB Shift out LSB

(b) Determine a

Figure 4.2 Methodology to obtain 2n, its square root and a

the square root of 2n from the memory and the square root of a from the algorithm and obtain

the product of the two in the final stage. The output is thus available at the end of twelfth

stage. With a pipelined architecture after an initial latency of twelve cycles a valid square root

value can thus be obtained every other cycle.

4.3 Trigonometric Function Component

4.3.1 Principle

The trigonometric function is implemented using linear-interpolation method described in

Equation (4.1). However, the implementation is slightly different from the one used for look-up

curve component. With linear-interpolation method a better approximation of the function

can be achieved when the interval between the two precise data points is as small as possible.

Though the approximated value gets close to the actual value, increased number of data points

cost more in terms of resource usage.

We use the same architecture to compute both the trigonometric and inverse trigonometric

functions. However, the difference is in the way the input and output data values are in-

terpreted. To compute trigonometric function we explore the symmetry among the function

values and generate a look-up table that contains the sin values for 1250 equally spaced points

www.manaraa.com

34

between the interval 0 to π
2 . The cos value is generated from the same table using identity

cos(x) = sin(π
2 -x) and the input is modified accordingly. Also, the function values in other

quadrants can be computed using trivial trigonometric math but they may have different sign

magnitude. To determine the sign magnitude, we first reduce the input to the component in the

range 0 to 2×π. We compute floor of the value obtained by division of the number with 2×π.

The integer result obtained is multiplied again with 2×π and then subtracted from the original

number. The result is the reduced number in the required range. The component determines

the quadrant of the input and the sign magnitude depending on whether it is computing sin or

cos and reduces the input to the range 0 to π
2 . To compute the inverse trigonometric function,

we generate a look-up table that contains the inverse sin values for 1250 equally spaced points

between the interval 0 to 1. The cos value is generated from the same table using identity

acos(x) = π
2 - asin(x).

For a look-up table approach with 1250 points, the principle described in Section 4.1, would

need two such tables. If the number of bits selected is not huge, it may still be possible to

implement a two table approach; however with increase in the number of bits, the resource

usage will be tremendous. We thus use a single table approach which adds 2 cycle delay to the

computation time obtained from the principle in section 4.1.

We make two assumptions for the input that is sent to this component for computing the

trigonometric function. First, it is always a positive value. Second, it is in the range of 0 to

2×π. A number greater than 2×π is converted to a number within this range. For a negative

input value, we compute 2’s complement of the number and send the modified value to the

component. For sin function, we restore the sign by taking 2’s complement of the output since

sin(-x)=-sin(x). For a cos function, cos(-x)=cos(x), second 2’s complement operation is not

required. For inverse trigonometric functions, the input is saturated in the range between 0

and 1.

The component is fully pipelined to generate a new trigonometric function value every cycle

after an initial delay of seven cycles. For computing inverse trigonometric functions a further

reduction of input to the range 0 to π
2 is not required. So in the first stage we register the input

www.manaraa.com

35

and compute the index. For computing trigonometric functions, in the first stage a further

reduction to the required range is done before computing the index. The index from the first

stage is used to compute the address of two consecutive data points in the second stage. The

third stage does the same arithmetic, However in the fourth stage, instead of executing equation

(4.1), we compute the difference of the two function values read from the memory and also

pipeline the lower index data point until sixth stage. The division of difference by constant

∆X is implemented by multiplying with its inverse to obtain the slope estimate in fifth stage.

In the sixth stage, function value is obtained by computing the product of the result from the

fifth stage, slope estimate with the result from the third stage, input - X1 and added to the

lower index data point read from the memory. The output is then pipelined for one stage and

made available at the end of seventh stage.

www.manaraa.com

36

CHAPTER 5. Application of the Methodology on an 8th Order Vehicle

System

We apply the methodology discussed in Chapter 3 to generate a FPGA-based simulator

for an 8th order vehicle system. The steering valve dynamics that simulates the delay between

rotation of the steering wheel and actual movement of the tire is very sensitive to change in

the steering wheel input. The dynamics of this system have a very small time constant, and

with RK4, the system is numerically unstable for integration step much larger than time step

hvalve, of 10 µs. The vehicle dynamics that simulates the overall movement of the vehicle, can

be captured with a time step, hvehicle, of the order of few milliseconds. With such a small value

of time step for the steering valve model, when the vehicle system simulation is implemented

on MATLAB, simulation output fails to meet the real-time constraints. The vehicle dynamics

when simulated by itself meet the constraints. In this Chapter we first discuss the dynamics of

the vehicle system and then apply the methodology discussed in Chapter 3.

5.1 8th Order Vehicle System - Steering Valve and Vehicle model

The steering valve dynamics is described in detail in [18]. It uses a gerotor motor and a

rotary valve assembly, to direct the fluid to different branches of a double ended cylinder. The

four valve openings on the cylinder, two on the left and two on the right, are used to direct

flow to and from the cylinder. The hydraulic dynamics of the rotary valve assembly is based on

establishing relationship between the pressure at four different volumes, two in the two sides

of the gerotor motor and two in the two ends of the cylinder, and the net flow rate (through

different valves) to hydraulic volume, given by Equation (2)[43].

ṗ =
β

V
× (∆Qv) (5.1)

www.manaraa.com

37

where ṗ is the pressure, β is the bulk modulus, ∆Qv is the net flow rate to volume and V is

the total volume.

The four valves control the flow rate through four openings of the cylinder. The valve

opening area is a function of relative displacement (rdel) between angular position of steering

wheel (As) and gerotor motor (Am) given by

rdel = As − Am (5.2)

As is obtained from the continuously changing steering wheel input from the HIL and Am is

computed using formula

Am =
−q1

Ig

(5.3)

where q1 is derived state of the system and Ig is gerotor inertia. Since valve opening area is

a function of two dynamically changing values As and Am, the flow rate through these valves

also changes continuously and is computed using relation given below:

sqrt =

√

(

2 × abs(pi − pf)

ρ

)

Q = A(Θ) × Cd × sqrt × sign(pi − pf) (5.4)

where A(Θ) is the valve opening area, pi and pf are the inlet and outlet pressure at valves, Cd

and ρ are the constants that define the coefficient of discharge and the fluid density respectively.

The vehicle dynamics of the system is governed by the displacement of a cylinder piston

from its neutral position which in turn is controlled by the flow rate through valves. The

angular displacement of the piston thus forms the system input for the vehicle model. The

details of the dynamics of the vehicle model is explained in [19].

Figure 5.1 shows the architecture of the vehicle system. The steering valve model consists of

three units: valve opening area, orifice flow rate, state-space solver. The vehicle model consists

of two units: trigonometric function and state-space solver. The non-linear dynamics of the

steering valve model reads As from HIL and previous state of the valve to compute system input

for the state-space solver. The solver implements a numerical integration method, with a time

step hvalve, to compute new state of the valve. The state variables model different attributes of

www.manaraa.com

38

Valve opening
area unit

Orifice flow
rate unit

Non-linear dynamics

Steering valve model

Vehicle model

From HIL

To display
monitor

Trigonometric
function

State-space
solver

State-space
solver

Figure 5.1 Architecture of the vehicle system

the valve and one of the states is used to compute system input for the vehicle model using a

trigonometric function. The solver for vehicle model also implements the numerical integration

method, with a time step hvehicle. It reads the previous state of the vehicle and system input

to compute the new state of the vehicle, which is sent to the display monitor.

The valve opening area unit updates the valve opening area of all the valves at every

time step. For each valve the maximum and minimum relative displacement between As and

Am is fixed. We divide this range into equally spaced values and compute the corresponding

area and thus obtain a look-up table that holds the valve opening area for predefined relative

displacement values. Using a linear-interpolation method, we can compute the valve opening

area for any value between the given maximum and minimum relative displacements.

Orifice flow rate unit updates the flow rate through each valve. It reads the opening area

of the valve A(Θ), available at the output of valve opening area unit, along with the present

state yi of the system and computes the flow rate through each valve using equation (5.4). The

inlet and outlet pressure values at the four desirable valves are determined from the four of

www.manaraa.com

39

the eight states in yi. The flow rate through the four valves (and two dummy valves which do

not affect the state of the system), constant pump outlet pressure (Pp) and As constitute the

system input vector for the valve model.

One of the eight states of the steering valve model tracks the piston displacement position

after every time step, hvalve. The trigonometric function is used to convert the linear displace-

ment to the angular displacement of the piston that eventually forms the system input for the

vehicle model.

The state space solver for both the models perform actual simulation process by numerically

integrating the models at their respective time steps. Assuming that the system input for the

valve model As, is received every S seconds. This implies that we want to determine the final

state of the vehicle after S seconds. Though, in real-time scenario, the two systems run in

parallel. But for simulation purposes, we shall run the steering valve first and then the vehicle

model. The steering valve model is thus simulated for S
hvalve

iterations followed by the vehicle

model which is simulated for S
hvehicle

iterations. The output of either the last iteration of the

steeing valve model or the average of all the iterations over S seconds is fed to the vehicle model

whereas the output of the last iteration of the vehicle model represent the state of the vehicle

after S seconds.

The models integrated by the state space solver, are in general form of state space repre-

sentation of a linear system, given by equation (2.2). Though the state space representation of

non-linear systems varies with systems under consideration, we modify the non-linear steering

valve model to be represented in this form. Author [18] thus developed a set of equations using

relation in equation (5.1) and generated the required coefficient matrices and vectors for state

space representation of the form in equation (2.2) for the steering valve model.

The coefficient matrix (A) and state variable vector, yi are shown in Figure.5.2(a). In A, the

first four rows model the hydraulics dynamics where β 1 to β 4 are the fluid bulk modulus of the

volumes V1 to V4. CL1, CL3 and CL2 are the leakage flow coefficients for respective volumes,

CLm is the gerotor motor leakage flow coefficient, CLc is the cylinder leakage flow coefficient,

and Cp is the flow-pressure coefficient for the pipe. The corresponding state variables are given

www.manaraa.com

40

β1(CL1) -β1(CLm+CL1)β1(CLm) -β1(Vd)

V1 V1 V1*I V1*I

-β1(Vd)c2

V1*I
2

0 0 0

β2(CL2) -β2(CLm) -β2(CLm+CL2)-β2(Vd)

V2 V2 V2*I V2*I

-β2(Vd)c
2

V2*I
2

0 0 0

-β3(CL3) -β3(CLc) -β3AC

V3 V3 V3

0 0 0

β4(CL4) -β4(CLc)

V4 V4

0

0

0

0 0 0 0 1 0 0

0 0 Ac

m
-k1

m
0 0

Vd -Vd 0 0 0

0 0 0 0 -c2

β4AC

V4

0

0

-Ac

m

0

0

00

0

0

0

-c1

m

0

1
Ig

A = yi =

p1

p2

p3

p4

x

v

q1

q2

(a) Coefficient matrix A and state variable vector yi

β1 -β1

V1 V1

-β1(Vd)c2

V1*I
2

0 0 0

B =

Qol1

u =

Qor1

Qol2

Qor2

Qol3

Qor3

Pp

As

0 0

β2 -β2

V2 V2

-β2(Vd)c
2

V2*I
2

0 0 00 0

β3

V3

0 00 0

00 0

0 0 00 0

0 0 00 0

0 0 00 0

0 0 00 0

0 -β3

V3

0

0 0
β4

V4

-β4

V4

0

0 0

0 0

0 0

0 0

0

0

-k2

-c2

(b) Coefficient matrix B and input variable vector ui

Figure 5.2 Coefficients and variables for Steering Valve and Vehicle model

by p1 to p4.

The next two rows in A model the cylinder piston dynamics and the variables are cylinder

area Ac, cylinder viscous damping c1, cylinder spring constant k1 and gerotor motor moment of

inertia I. The cylinder piston velocity v and the cylinder piston position x represent the state

variables.

The last two rows in A represent the gerotor motor and rotary valve assembly dynamics

and the variables are gerotor frictional damping c2, valve centring spring constant k2, gerotor

displacement Vd and equivalent mass m of steering system. q1 and q2 are the state variables

that represent the derived states.

The coefficient matrix B and the system input vector are shown in Figure.5.2(b). In the

input vector Qol1, Qol2 and Qol3 are flow rates through left end of the cylinder, Qor1, Qor2 and

Qor3, are flow rates through right end of the cylinder. The rows corresponding to flow rates

Qol3 and Qor3 in the input matrix B are zeros which implies that these flow rates do not affect

the final state of the steering valve system. This explains the reason for four instead of six

pressure values in the state variable vector associated with the four valves.

5.2 Application of the Methodology

Based on the criteria described in Chapter 3 for system-level analysis, we implement the

computation intensive part of the model i.e. numerical integration method in the hardware.

www.manaraa.com

41

The parallelism in the computations involved in RK4 make it an ideal candidate for FPGA

implementation whereas the method to compute the position co-ordinates involves relatively

simpler execution and can be implemented on the software. However, the frequency of com-

munication between the two models allows the following two Hardware/Software partitioning

schemes:

• The implementation of both the computation intensive models, which can be efficiently

parallelized and pipelined in hardware, while keeping the computation of the position

coordinates in the software.

• The implementation of just the steering valve model in hardware, since the vehicle model

can easily meet the real-time requirements with a software implementation. The compu-

tation of the position coordinates remains in the software as well.

We discuss in detail the first approach and apply the methodology described in Figure 3.3 to the

vehicle system discussed above. The software partition and its implementation are discussed

along with the implementation details of the selected hardware. We describe the design layout

of both implementation strategies in section 5.4.

Step 1 : The input to the Step 1 of our methodology is the CPU-based simulator, .01% of

PRE, RTC of 10 µs for the steering valve model, 2ms for the vehicle model and 101,760 x 2 ALMs

of AR (Dual FPGA). To generate an fCPU-based simulator, we use a CPU-based simulator

that implements the dynamics of the vehicle system and find the functionalities that have an

equivalent component in the hardware component library. In our vehicle system the valve

opening area unit uses a linear-interpolation method which can be implemented using look-up

curve component on the hardware. The orifice flow rate unit involves multiplication and square

root functions. The multiplications are implemented using hardware multipliers available on

board and the square root function is implemented using a component from the library. The

state space solver for both the models uses RK4 component explained in next section. After

having decided the components, all the functionalities in the CPU-based simulator are replaced

with the selected components from the software component library to obtain a fCPU-based

www.manaraa.com

42

design.

Step 2 : For this work we do not consider the variation in time with respect to the number of

bits. We assume that the time taken by the components remain constant as the bit combination

changes. Table 5.1 shows the time taken by each component that constitute the FPGA-based

simulator. To estimate the time taken for a completely parallelized design, we first list down the

components in the order required to complete a single iteration of the steering valve and vehicle

model. We need four look-up curve components followed by a pipelined square root component

for 6 orifices. The output of the square root component will feed the RK4 component for the

steering valve which would then drive the RK4 component for the vehicle. The output from

all the look-up curve components will be available in 5 cycles. To implement Equation 5.4 for

6 orifices, it will take a cycle to compute the 2s complement of the negative number, 12 cycles

to compute the square root, a cycle to further complement the result of the square root and

a cycle to implement the two multiplications. Thus, the output from all the orifices will be

available in 21 cycles. An RK4 component for steering valve model takes 169 cycles and that

for vehicle model takes 113 cycles. An additional 7 cycles are consumed by a trigonometric

function at the input of RK4 component of the vehicle model to obtain the angular piston

displacement. Thus, a single iteration of steering valve and vehicle model takes 315 cycles. For

a design running at 100MHz the time taken will be 3.15µs, for a desing running at 75MHz the

time taken will be 4.2µs and for a design running at 60MHz the time taken will 5.25µs which

when compared with 10µs meet the RTC.

Step 3 : Ideally the PRE is determined when the model is built based on the amount of

error it is capable to tolerate. For our work the PRE is set to .01%. Given the maximum

bit-width combination of F=64 and I =64, the plots for relative error in Figure 5.3 show that

the PRE constraint is easily met with this combination.

Step 4, 5 and 6 : We further reduce the bit-width combination by estimating the relative

error for different combinations. We start with the maximum bit-width of 128 for which the

relative error is close to zero. We first estimate the number of I bits for which the relative error

remains within the given PRE value and then reduce the number of F bits until it meets the

www.manaraa.com

43

Table 5.1 Cycle Count by Individual Hardware Components

Component Cycles Count

RK4 Vehicle 113

RK4 Valve 169

Look-up Curve 5

Square Root 12

Trigonometric 7

criteria. The Figure 5.3(a) shows the relative error in the output of non-linear steering valve

model for I ranging from 64 down to 48 with different values of F. As we reduce the number

of F bits the relative error increases until F=16. However, for values of F smaller than 16,

the relative error is close to 100%. This is because the data values are so small that they are

converted to zeros due to insufficient bit-width. As a result the relative error shows a drop to

100% for values of F less than 16. The number of F bits for which the relative error reaches an

error value close to the given range is thus estimated to be M=91 and F=42. Similarly for the

linear vehicle model Figure 5.3(b) shows the relative error in the output for I ranging from 24

down to 8 with different values of F. As we reduce the number of I bits, the overlapping plots

imply that the relative error remains constant whereas it increases as we reduce the number of

F bits. The number of F bits for which the relative error reaches an error value close to the

given range is thus estimated to be M=54 and F=46.

Step 7 : Assuming the completely parallelized design, to obtain the estimate of hardware

RU for the selected combination from the previous step we refer to the graphs in Figure 3.4

and Figure 5.4. The RU is computed in terms of Altera’s ALMs. The steering valve model

needs four look-up curve, six square root, one RK4 component and a trigonometric function

at its output, the total RU is approximately 98K ALMs. The vehicle model needs one RK4

component, the resource usage for which is approximately 27K ALMs. The total resource usage

is thus estimated upto 125K ALMs which is within the range of the AR of 203.52K ALMs.

The automated scripts take the order of the model and bit-width combination as input. The

scripts generate the parameters file, look-up tables for each component with data in fixed-point

www.manaraa.com

44

0

25

50

75

100

125

8 16 24 32 40 48 56 64

P
e

rc
e

n
ta

g
e

 R
E

Fractional (F) Bits

I=48

I=49

I=52

I=56

I=60

I=64

Integer (I) Bits

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014

40 44 48 52 56 60 64

P
e

rc
e

n
ta

g
e

 R
E

Fractional(F) Bits

I=49

Integer(I) Bits

(a) Relative error for Steering Valve Model

0

20

40

60

80

100

120

8 16 24 32 40 48 56 64

P
e

rc
e

n
ta

g
e

 R
E

Fractional (F) Bits

I=8

I=12

I=16

I=20

I=24

Integer (I) Bits

0.00

0.01

0.02

0.03

0.04

0.05

0.06

44 48 52 56 60 64

P
e

rc
e

n
ta

g
e

 R
E

Fractional(F) Bits

I=8

I=12

I=16

I=20

I=24

Integer(I) Bits

(b) Relative error for Vehicle Model

Figure 5.3 Relative error in the output of Steering Valve and Vehicle Model

format with bit-width of M. A wrapper is then designed to connect the look-up curve, square

root, RK4 components.

To check the design for functional correctness we run the MATLAB version of design for

few iterations and log the output after each computation in a file. We also convert the value

to equivalent fixed-point representation using the selected bit combination, in hexadecimal

format. The hardware simulation for Modelsim is also run for atleast the same number of

iterations which shows the results in hexadecimal format. It thus becomes easier to debug and

locate a faulty component resulting in a mismatch. With the initial bit-width combination

the Modelsim simulation output does not match the MATLAB output because of insufficient

number of F bits to represent the small values generated during the computation. We increase

the number of F bits and go back to Step 7 and apply our methodology thereafter. The final

bit-width combination which generates the Modelsim simulation output close to the MATLAB

output is M=96, F=47 for steering valve model and M=56, F46 for the vehicle model. The

hardware RU for this combination is 113K ALMs for the steering valve model and 30K ALMs

for the vehicle model which meets the RU constraint.

www.manaraa.com

45

0

20

40

60

80

100

120

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e

s
o

u
rc

e
 U

ti
li

za
ti

o
n

(T
h

o
u

s
a

n
d

s
 o

f A
L

M
s
)

Integer (I) Bits

F=8
F=12
F=16
F=20
F=24
F=28
F=32
F=36
F=40
F=44
F=48
F=52
F=56
F=60
F=64

Fractional (F) bits

Figure 5.4 Hardware resource utilization for RK4 component for the vehicle model

To estimate the bandwidth requirement of the design we use Figure 5.5 which plots the

bandwidth requirement of the vehicle model, with just the RK4 component, and it shows that

the required bandwidth increases with the increase in the order of the model. We further

compare it with the bandwidth offered by different interfaces available on Xilinx and Altera

boards. Though PCIe comes across as a good option for the 8th order model, the interface will

not be beneficial for higher order models where bandwidth requirement is close to its offered

bandwidth. The required bandwidth is based on the time taken to generate the output such

that as the time taken increases the required bandwidth decreases. The complexity and order

of the model increases the time taken to generate the output as a result there is a decrease in

the required bandwidth. So, the vehicle system with just the vehicle model when combined

with the steering valve model, the required bandwidth is expected to decrease owing to increase

in the time required to generate the output due to added complexity.

To obtain the required bandwidth for the steering valve and vehicle model we assume the

design to be running at 100MHz. The steering valve model needs 128 bits for a reset signal,

128*N bits to define initial state of the system and 128 bits for the system input. Though it

www.manaraa.com

46

��
��
��
��

FSB

PCIe(ideal)

GigE
���������
��������� USB 2.0

0

1

2

3

4

5

6

7

8

9

B
a

n
d

w
id

th

(G

b
p

s
)

Number of States (N)

Bandwidth Analysis

50MHz

100MHz

150Mhz

200MHz

FPGA Clock
Frequency

Peripherals
Available

Figure 5.5 Bandwidth analysis

needs the first two values only once, when the simulation triggers, we compute the bandwidth

considering the maximum requirement. We briefly discussed in section 3.4 that the hardware

stalls after simulating for 20 ms until it receives a new system input. So, even though the

hardware does the computations faster than 20 ms, it does nothing until 20 ms have passed.

We thus use the time to estimate the bandwidth as 20ms. The required bandwidth for N=8,

from CPU to FPGA is calculated using formula 1280∗100MHz
20ms

and is estimated to be 64Kb/s.

The vehicle model sends eight states, 128*8 and a counter value, each 128 bit wide, also every

20ms. Thus, the required bandwidth from FPGA to CPU is estimated to be 1152∗100MHz
20ms

=

57.6Kb/s. For this work we use XtremeData platform which provides a bandwidth of the order

of 8.28 Gb/s (1.035GB/s). Figure 5.5 gives a brief comparison of the bandwidths offered by

different platforms and shows that with the given bandwidth requirement most of the interfaces

such as PCIe (2.5 Gb/s), USB (.48 Gb/s), GigE (1 Gb/s), FSB (1.035 GB/s) shall be able to

satisfy the demand. However, it is the resources which form a bottleneck for this design. Table

5.2 compares the RU with the AR on different Stratix-III and Virtex-5 FPGA boards. For

www.manaraa.com

47

Table 5.2 Comparison of FPGA devices

Device type ALM LUTs Equivalent ALMs1 ALMs required for Design

Stratix 3SL200 79.5K x x 143K

Stratix 3SE260 101.76K x x 143K

Stratix 3SL340 135.2K x x 143K

XC5VLX220 x 138.24K 115.2K/76.8K 143K

XC5VLX330 x 207.36K 172.8K/115.2K 143K

Xilinx devices, with LUTs as basic building blocks, equivalent number of ALMs are obtained

by using relation defined in [33]. The table lists the largest devices in terms of basic building

blocks for Stratix III and Virtex-5 family. Though all of them fail to meet the space constraint,

the XtremeData platform with two Stratix 3SE260 boards becomes an appropriate choice. It

will allow us to add more components to the design without reaching the limit soon.

5.3 State-space solver - RK4 Integrator

The actual simulation process is performed by solving state-space representation of the

system using RK4 integration method [5] and the steps involved are described in Figure 2.1.

The function f is the state space representation of the system described in Equation (2.2) and

we use this representation to formulate the dynamics of the steering valve and vehicle model.

The steps involved in the computation of yi+1 is sequential as the computation of new slope

(k2, k3, k4) is dependent on the previous slope (k1, k2, k3) respectively. Since we cannot

parallelize them we explore the parallelism within each computation. The RK4 integrator for

FPGA-based simulator consists of three components: RK4 controller, system dynamics and

system output, where the latter two, implement the actual dynamics of the integrator and the

former implements a state machine to control the flow of information between the other two.

As shown in data-flow diagram through a single iteration in Figure 5.6 each iteration is divided

into four stages. During the four stages, system dynamics computes the slope estimate kl (l is

the stage number) and feeds the result to the system output component. The system output

1For Xilinx, 1ALM=1.2LUTs/For Altera, 1 ALM=1.8LUTs

www.manaraa.com

48

yi+1 yi
Stage 1 Stage 2 Stage 3 Stage 4

A*y = ai,j x yi

B*u = bi,j x u

k1 = A*y + B*u

k1*w1 ẏ1=k1*h/2 +yn

A*y = ai,j x ẏ1 A*y = ai,j x ẏ2

B*u = bi,j x u

k2 = A*y + B*u

k2*w2 ẏ2=k2*h/2 +yn

B*u = bi,j x u

k3 = A*y + B*u

k3*w3 ẏ3=k3*h/2 +yn

A*y = ai,j x ẏ3

B*u = bi,j x u

k4 = A*y + B*u

k4*w4

ẏ1 ẏ2 ẏ3

yi+1=yi+(p1+p2+p3+p4)*hp1
p2

p3

System Dynamics

System Dynamics

System Output

RK4 Controller

yi+1 yi

p4

u

u =

Qor1

Qol1

Qor2

Qol1

Qor3

Qol3

Pp

As

Figure 5.6 Data-flow diagram for RK4 iteration

computes intermediate state, ẏl (except in the last stage), which is fed to the system dynamics.

It also adds and pipelines the intermediate results of weight and slope multiplication. In the

fourth stage, the system output adds these pipelined results and computes the new state of the

system.

We use FPGAs parallel architecture to pipeline computations within the components in

each stage. The system dynamics implement matrix-vector multiplication which is equivalent

to z independent vector-vector multiplications where z is the number of rows in a matrix. The

parallel architecture of the FPGA gives us the ability to do these computations in parallel.

However, the amount of work that an FPGA can do in one clock cycle is limited by its clock

frequency. For example, in an Nth order model a N-by-N matrix is multiplied with a N-by-1

vector, where each element is I+F bits long. The total number of operations required in one

clock cycle are N2 multiplications and N x N-1 additions. As the matrix size or the number of

bits increases, it gets difficult for FPGA to perform all these computations in one clock cycle.

We thus pipeline the matrix-vector multiplication such that a new vector-vector multiplication

www.manaraa.com

49

a1,1

Store

x x x x x x xx

y1,1 a1,2 y2,1 a1,3 y3,1 a1,4 y4,1 a1,5 y5,1 a1,6 y6,1 a1,7 y7,1 a1,8 y8,1

+ + + +

+ +

+

1

2

3

4

5

R1 R2 R3 R4 R5 R6 R7 R8

6

(a) Pipeline stages to compute a(1,1:8) x y(1:8,1)

2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1

clock

6

6

6

6

6

6

6

6

(b) Pipeline architecture to compute A x y

Figure 5.7 Pipeline architecture of System Dynamics component for an 8th order system

is instantiated every cycle. The number of these instantiations is equal to the number of rows

z in the matrix. Figure 5.7(a) shows different stages in the vector-vector multiplication of

a(1,1:8) x y(1:8,1) for an 8th order system. Figure 5.7(b) shows the number of cycles taken by the

pipeline architecture to compute A x y. The matrix-vector multiplication for B x u observes

the similar architecture and can be implemented in parallel with A x y. However, to improve

the timing characteristics of the design we serialize them.

In a six stage pipelined architecture for system dynamics component, the first cycle is used

to compute a vector-vector multiplication. In the next cycle the required number of bits from

www.manaraa.com

50

the product are saved in the zeroth vector of a 2D array. In the third cycle, the eight product

terms are added using four adders and the result is saved in the first vector location of the 2D

array. In the fourth cycle, we add these four data values and save the result in the second vector

location followed by addition of the two data values in the fifth cycle. An additional cycle is

consumed to pipeline the result. For an 8th order system, each of these stages are implemented

for the eight vector-vector multiplications and thus takes 13 cycles to compute A x y, as shown

in Figure 5.7. The multiplication of B x u also goes through the same stages with an extra

stage to add the result of two multiplications which makes the cycle count as 14 for the second

multiplication. The system output takes 12 cycles to compute intermediate ẏl states and RK4

controller which controls the state transition takes another 13 cycles to change states between

the two components. Since there are 4 stages, the total time taken is 4x14 + 4x13 + 4x12 +

13 = 169 clock cycles.

Another variation of this implementation is when system input u is scalar instead of a

vector quantity. In this case B matrix is a vector of size N x 1 and B x u is reduced to a

vector-vector multiplication. This optimization, first, allows the parallel implementation of the

two multiplications, A x y and B x u and, second reduces the number of state transitions. RK4

controller which controls the state transition now takes 9 cycles instead of 14 because the two

multiplications can be done in parallel. The total time taken is thus reduced to 4x14 + 4x12

+ 9=113 clock cycles.

5.4 Design Layout

From the CPU-based simulator it is clear that the input of one unit is dependent on the

output of previous unit. The sequential flow of information thus requires that a high-level

architecture of the CPU-based simulator is maintained in the FPGA-based simulator. However,

difference in the architecture of each unit changes the way the data-flow is maintained in the

latter. The basic components that make up these units (will be referred to as component here

after) have already been discussed in Chapter 4 and we use these components to explain the

architecture and data-flow in the FPGA-based simulator shown in Figure. 5.8 for the vehicle

www.manaraa.com

51

system.

For the first implementation strategy the FPGA-based simulator of the vehicle system

consists of four major components: valve opening area, orifice flow rate, state space solver

for valve model and state space solver for vehicle model. Because of resource constraints on

a single FPGA we use both the FPGAs (FPGA A and FPGA B) provided by XtremeData

platform [51] and the shaded blocks in Figure 5.8 shows the partition of the components. We

will soon discuss the criteria behind this distribution in detail. FPGA A implements the valve

opening area of the steering valve and RK4 integrator of the vehicle model whereas FPGA

B implements the orifice flow rate and RK4 integrator of steering valve model. FPGA A is

capable of exchanging data with the host and the FPGA B whereas FPGA B can exchange

data only with FPGA A. The wrapper that instantiates the components on the two FPGAs

thus implements a finite state machine (FSM) which synchronizes the data-flow between the

two FPGAs and with the host. Since the interface connecting the two FPGAs and the FPGA

A with the host is 256 bit wide the FSMs also pad the outgoing data with zeros and extract

the required I+F bits from the incoming data.

The wrapper on FPGA A scans the most significant 32 bits of the data packet being sent

by the host. These bits categorize the data in the first 128 bits of the packet as either of

the following: data to reset the simulator, data to initialize the state of the system and data

representing the system input, received in that order. When the system input is received the

valve opening area reads I+F bits and starts the computation. When the done signal from

this component goes high, marking the validity of the data, the output vector is padded with

zeros to make each value of maximum allowable length i.e. 128 bit wide. Since the bus is 256

bit wide and there are four 128 bit values in the vector, they are sent across in two packets.

The component then stalls until it receives new state information from the state space solver

of the steering valve model. Recall from equation (5.4) the computation of A(θ)* Cd and sqrt

can be done independently of each other. While the valve opening area is busy computing the

former, system input is also sent to the orifice flow rate to compute the latter. It also stalls

after computing the sqrt and waits for a valid output from the valve opening area. The wrapper

www.manaraa.com

52

State-space
solver

Orifice flow

rate

Non-linear dynamics

Vehicle model

From HIL

To display
monitor

Valve opening

area

LUC

LUC

LUC

LUC

rdel

√A(Θ)

u=

Qor1

Qol1

Qor2

Qol1

Qor3

Qol3

Pp

As

yi+1(5)

xixi+1

yiyi+1q1=yi+1(7)

Steering valve model

Trigonometric
function

State-space
solver

RK4 controller

System dynamics

System output

RK4 controller

System dynamics

System output

Figure 5.8 Design Layout of FPGA-based simulator for the Vehicle System

on FPGA B scans the incoming interface from the FPGA A. A valid signal on this interface

indicates that a valid data is available on the input data bus. The valid signal remains high

for two clock cycles, since two 256 bits packet are sent. The output from orifice flow rate is a

vector of size eight, each element being I+F bits wide and a done signal to mark the validity of

the data on its output bus. Its output forms the system input for the state space solver of the

steering valve model which starts computation when the done signal goes high. The output

from the state space solver is fed back to both the orifice flow rate and valve opening area. The

former reads all the states of the system whereas the latter needs only the state variable q1,

Figure 5.2(a).

The vehicle model starts execution, only when steering valve model has completed. How-

ever, owing to difference in their time steps there is no one-to-one relation in the number of

times they are executed. When the steering valve model completes S
hvalve

iterations, vehicle

model runs for S
hvehicle

iterations. Thus, when state space solver of the steering valve completes

the execution, the wrapper on FPGA B checks if S
hvalve

iterations have completed. If no, then

www.manaraa.com

53

the FSM sends the state variable q1 and x (piston displacement), used to compute system input

for state space solver of the vehicle model, to FPGA A and waits for next valid output from the

valve opening area. If yes, then the FSM resets the counter to zero and waits for a new system

input from the host to be routed through FPGA A. On FPGA A, a similar check is made, if

S
hvalve

iterations have completed, trigonometric component reads x on the incoming interface

from FPGA B, computes the angular displacement of the piston and triggers the vehicle model

to run for S
hvehicle

iterations. In parallel, the counter for S
hvalve

iterations is reset to 0 and valve

opening area component is set to wait for a new system input from the host. Recall from

section 3.4 in Chapter 3, the system input does not change until simulation has run for S
hvalve

and S
hvehicle

iterations. And the new system input will be received only when FPGA A has sent

the simulation output from the vehicle model back to the software.

The initial state of both the steering valve and vehicle model is assumed to be zero. Thus,

when the first system input is received, the valve opening area does not read the incoming

interface from FPGA B for the updated value of q1. For the next S
hvalve

iterations the system

input remains same whereas state q1 gets updated after every iteration. The component in-

stantiates four look-up curve components which read four different memory blocks storing the

look-up table data for each valve. The length of the address bits to access the memory block

is determined by the number of data values in the block where each data is I+F bits long.

The information about the address bits, maximum and minimum X value in each memory

block, ∆ X and 1
∆X

is stored in the parameters files while generating the VHDL design for the

components using automated scripts.

The orifice flow rate component instantiates a square root component, input to which is

the difference between various states of the valve determined by the state space solver. The

difference is computed in a pipelined manner such that a new input is sent to the square root

component every cycle. The output from the square-root component is latched until a valid

output is received from the valve opening area.

The state space solver which implements the RK4 integrator has already been discussed

in previous section. The only difference is in the system input for the two models and the

www.manaraa.com

54

number of bits used for fixed-point representation. The system input u for the steering valve

model is a vector computed by the orifice flow rate component given in Figure 5.2(b). The

system input u for the vehicle model is a scalar quantity, computed by applying sinusoidal

inverse function to the piston displacement x. Since we compute the inverse function, the input

to the trigonometric component is normalized to a value between 0 and 1. However, for the

vehicle system in consideration, the piston displacement is further limited to the range ±.254

so instead of normalizing the input between 0 and 1 we saturate the input within the given

range. A valid done signal triggers the state space solver for the vehicle model, which uses the

output of the trigonometric component as system input.

For the second implementation strategy we implemented the vehicle model on MATLAB

while running the steering valve model on the FPGA. The resource utilization for this im-

plementation was close to 100% but we were able to fit the design on a single FPGA. The

implementation of the design remains the same since the individual components are same how-

ever instead of using dual FPGAs we used just one and avoided the communication delay

between the FPGAs. The state space solver for the vehicle model reads the output of the

steering valve model sent from the FPGA, runs for 20ms.

5.5 Data Flow and Cycle Estimate

The valve opening area uses initial two cycles to compute Am, equation (5.3) and rdel,

equation (5.2) respectively. The division operator required for computation of Am using equa-

tion (5.3) is implemented with an inverse operation. Since Ig remains constant throughout the

simulation, we save its inverse in the parameters file while generating the VHDL design. rdel

is computed in the second cycle by taking 2′s complement of Am and adding the result to As.

The look-up curve takes five cycles to generate the output and an additional cycle to obtain the

product with Cd followed by a cycle to pipeline the output. Thus total of 9 cycles are used to

obtain the output from a single look-up curve component. Four look-up curve components for

four valves are instantiated in a pipelined manner for which the output is available in twelve

cycles. The output, A(Θ)*Cd for each valve is saved in vector ~A(Θ). An additional cycle is

www.manaraa.com

55

consumed in the wrapper to pad the data with zeros.

The orifice flow rate component reads ~A(Θ) along with the present state of the system yi

and computes the flow rate using equation(4.2). Since the product A(Θ)*Cd has already been

computed in valve opening area, orifice flow rate handles two functions of the equation (5.4)

(1)square root (2)multiplication of output of the square root with ~A(Θ). In the first cycle it

computes the difference between the two pressure values (pi-pf) by adding 2′s complement of

pf to pi. The absolute of the difference is obtained by taking its 2′s complement only if the

difference negative i.e the MSB is 1. To replicate the sign of the difference in the final output

from this component we pipeline this sign bit to be used in latter stage. The square root of the

difference is initiated in the second cycle and the component takes 12 cycles to return the square

root. Thus, a single square root computation takes 14 cycles and a pipelined architecture for

six such computations (for six flow rates) takes 19 cycles.

The valve opening area and orifice flow rate are being executed in parallel. After receiving

the new state information from the RK4 the orifice flow rate starts the computation immediately

and stalls after 19 cycles until it receives the latest value of ~A(Θ) from valve opening area. So

when the valve opening area starts the computation, the orifice flow rate is already in a state

waiting for input from the valve opening area unit. The time taken to complete one iteration

of steering valve thus includes 13 cycles for valve opening area, followed by the 15 cycle delay

associated with sending two 256 bits packet to FPGA B. Orifice flow rate takes 8 cycles to

implement the second function. One cycle to read the valve area,six cycles to compute six flow

rate values and one cycle to set up the input vector for the state space solver. The state space

solver for the valve model takes 169 cycles, as explained in section 2.1 and further 13 cycles are

taken in sending two state output to the FPGA A. Thus, each iteration of the steering valve

model is completed in 226 cycles. Further on, the trigonometric function on FPGA A takes

7 cycles to generate the system input. The state space solver of the vehicle model reads this

input and computes the new state in 113 cycles, as explained in section 2.1.

www.manaraa.com

56

5.6 XD2000i Architecture

XtremeData’s XD2000i development system [51] is chosen to implement the design of

FPGA-based simulator. The system consists of a development PC with Xeon R©dual-processor

system, linux CentOS operating system and an XD2000i FPGA in-socket accelerator that

plugs directly into the processor system. The XD2000i module features three Stratix III

EP3SE260F1152C3 Altera FPGAs, one bridge and two application (FPGA A and FPGA B),

each with 254,400 logic elements (101,760 ALMs), a 1067M front-side bus (FSB) interface that

provides a bandwidth of 8.5 GB/s, two QDRII+ 350MHz SRAM each of 8MB, connected

with two application FPGAs through an interface that provides a bandwidth of 2.8GB/s. The

Bridge FPGA is dedicated to implement the FSB protocol that connects the bridge FPGA to

the Northbridge on one side and to the two application FPGAs on the other side. It is not

modifiable by the user and only the application FPGAs are used for implementation. The

bus connecting the bridge and the two application FPGAs is a 64-bit wide unidirectional bus

running at 200MHz. The data between the two application FPGAs is transferred through a

256-bit wide bus running at 100MHz.

The software partition runs on Xeon processor and implements the software controller that

uses blocking send and receives functions to communicate with the application FPGAs. The

blocking functionality implies that once a send function has been executed i.e data has been sent

to either of the FPGAs, the receive function cannot be executed. Alternatively, for every send

command to the FPGA the next send cannot be executed until the response to the previous

send has been received. An additional requirement for this communication process is that,

before the controller can initiate the transfer it should have the information about the number

of bits that should be sent and the number of bits that are expected from the FPGA. It then

prepares a send and a receive buffer of the required size. Any mismatch between the size of

the buffer and the number of bits sent or received will cause the controller and the hardware

to stall.

Figure.5.9 describes partitioning of the design across two FPGAs. The partitioning algo-

rithm is governed by two factors. First, implementation on the XtremeData platform requires

www.manaraa.com

57

XD2000i MODULE

A
P

P
_

A

P
O

R
T

Bridge

FPGA

VALVE
OPENING

AREA

APP PORT

APP PORT

ORIFICE
FLOW

RK4
Controller

VALVE

256256

64

64

FSB

FSB
CORE

FPGA B

FPGA A

BRIDGE

PORT

100MHz
Unidirectional

Bus at
200MHz, DDR

Intel

Northbridge
(MCH)

System

Memory

RK4

Controller

VEHICLEApplication

(CPU)

Figure 5.9 Design Partitioning on XD2000i Architecture

that the same application port is used to exchange data between the application FPGA and the

software controller. Hence, the valve opening area component, which receives the system input

from the software controller, and the state space solver of vehicle model, which generates the

simulation output i.e. the new state of the vehicle, are implemented on the same FPGA. Sec-

ond, for the bit combination of M=96, F=47 for the steering valve model and M=56, F=46 for

the vehicle model, Table 5.3 shows the percentage resource utilization of different components.

Resource utilization of FPGA A is thus estimated to be 29+11+5=45% and has the capacity

to accommodate more components. However, if orifice flow rate (which uses square root core)

and state space solver for steering valve model are implemented on separate FPGAs, there will

be a huge communication delay involved in sending data of eight states after every iteration

from one FPGA to another. To counter this problem and also to efficiently utilize resources of

both the FPGAs, we implement orifice flow rate and state-space solver on FPGA B with an

estimated resource utilization of 38+50=88%. Recall that the state of the valve model which

is used to compute the system input for the vehicle model represents the piston displacement.

To obtain the equivalent angular displacement trigonometric, function which implements the

www.manaraa.com

58

Table 5.3 Resource usage by different components

Component Percentage Resource Usage

RK4 Valve 38%

RK4 Vehicle 29%

Look-up Curve 11%

Square Root 50%

Trigonometric 5%

inverse of sin, is used before the input is fed to the vehicle model.

To run the RTS of the vehicle system using FPGA-based simulator hvalve is set to 10−6

s and hvehicle is set to 2−3 s. The software controller sends the steering wheel angle, As to

FPGA A every 20 ms. This includes the communication delay over FSB to send the system

input and receive the simulation output and also the time required to compute new state of

the vehicle. After sending the output, the simulator stalls until it receives a new system input

from the controller. Once the controller receives the simulation output it stalls until 20 ms

have completed before it can send a new system input.

5.7 Simulation and Synthesis Results

The maximum frequency supported by XtremeData (XD2000i) platform is 100MHz. How-

ever the design was only able to meet the timing constraints at clock frequency of 55 MHz

(18.18ns time period). We first compared the time taken by a single iteration on FPGA, using

Modelsim simulator, with the MATLAB based model running on an Intel Core2 Quad 2.83

GHz processor. The data exchange between the two FPGAs uses FIFOs. The only instance

when the data is written by FPGA A to its exit FIFO, is when it has to send 512 bits containing

the four valve opening area results to FPGA B. It is important to note here that FPGA A does

not write continuously to this FIFO and by the time the second set of 512 bits is written, the

first one has already been read, so we do not have scenario where FIFO full signal will go high.

Similarly, FPGA B writes to its exit FIFO when it has to send 256 bits containing 2 states of

the valve model to FPGA A. The inflow to the FIFO is 256 bits per iteration and by the time

www.manaraa.com

59

next 256 bits are written the first one has already been used. We thus assume that the delay

associated in sending data across the FPGA is closely simulated in Modelsim simulation to the

actual delay on the hardware.

The MATLAB based model takes 13µs to complete one iteration of steering valve and one

iteration of vehicle. The Modelsim shows that one iteration of steering valve model takes 4.1µs,

which includes a delay of .27µs (15 cycles) required to send 512 bits of data from FPGA A to

FPGA B. A further delay of .234µs (13 cycles) is observed, while sending the 256 bit output of

the valve model to FPGA B. The vehicle model generates output in 2.214µs (123 cycles). Apart

from RK4 component for the vehicle model which takes 114 cycles and 7 cycles are consumed

by the trigonometric function, a cycle is used to obtain the input for the trigonometric functions

by division of linear piston displacement, x with the length of the arm. A cycle is consumed

to complement the output of the trigonometric function. Thus, the total time estimated from

Modelsim to compute a single iteration of the steering valve and each iteration of the vehicle

model is 4.1+.27+.234+2.214=6.818µs. This comparison does show a speedup of 2 times over

the MATLAB implementation. However the actual simulation allows steering valve model to

run for 20 ms followed by vehicle model simulation for 20 ms. In Modelsim, the time required

to generate final output of vehicle system simulation for 20 ms is computed as 9.21ms which

shows a speedup of 2× over the required time of 20 ms.

The above comparison does not include the delay in sending data over the FSB interface.

We now compare the time taken by the hardwar/software design set-up which includes the

time required to send the system input to FPGA, run the simulation on FPGA and receives

the simulation results. The timer starts when the software controller sends the system input

to FPGA and stops after the simulation results have been returned to the controller. This

time is computed as 10ms, which shows a speedup of 2× over 20ms. Since the vehicle system

simulation running on FPGA expects a new system input every 20ms, we stall the software

controller for 10 ms before sending the next system input.

For the second implementation we were able to implement the steering valve model to run

at 62.5MHz on a single FPGA. The total time to run the simulation for 20ms was computed

www.manaraa.com

60

����

����

����

����

�

���

���

���

���

��
��

��
��

��
��

��
��

��
��

��
��

��
��

	�
	�

�

�

��
��

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

�	
��
�

�

�	
�

��
�

�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

�	
��
�

�

��
�

��
�	
�

��
�

�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

�	
��
�

�

��
�

��
��
�

��
�	
�

��
�

�

��
��
�

��
��
�

��
��
�

��
��
�

�	
��
�

�

��
�

��
��
�

��
��
�

��
�	
�

��
�

�

��
��
�

��
��
�

��
��
�

�	
��
�

�

��
�

��
��
�

��
���

���	

�	

��

���������	
���
���������		
�������� �����
	�����	� �����		
�������	����	�

�����

����	

���	�

����	

����

���	

��	�

���	

����

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�

��
��

��
	�

��

�

��
��

��
�

��
��

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
	�

��
	

��

�

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�

��
��

��
	�

��

�

��
��

��
�

��
��

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
	�

��
	

��

�

��
��

��
���

���	

�	

��

���������	
���

�����
���
�����
������	
���	�������
���������	������	����������
���������������	

�������	����		
�����		�����	������ �������
	�����	� �����		
�������	����	� �����
	�����	� �����		
�������	����	�

Figure 5.10 Response of the Steering Valve model to simualted and actual Steering input

as 7ms excluding the communication delay of 1 ms and we stalled the software for 12ms. The

simulation results were sent to the vehicle model on the FPGA which ran the vehicle model for

20ms and computed the position co-ordinates to be sent to the VR display monitor. For second

implementation since we used 3 different architectures to drive the simulation, the simulation

was slightly lagging because of the socket delay but the computation of the results is not lagging

behind. If the computation is lagging behind then over a period of time we would observe a

delayed vehicle movement in response to the change in the steering input because of aggregated

error in computation of the results. To show that the FPGA is generating correct results for the

steering valve model which further drives the vehicle model, Figure 5.10 compares the piston

displacement angle from the steering valve model in response to a simulated steering input of

a sinusoidal wave and the actual steering wheel input. We also plot the piston displacement

angle for same set of input from the MATLAB version of the model which overlap with the

output from the FPGA. The socket communication on an average takes 16µs to send the data

across and considering the time taken by FPGA to generate the output the socket delay is a

constant delay which does not increases over a period of time.

www.manaraa.com

61

CHAPTER 6. RELATED WORK AND FUTURE RESEARCH

6.1 Related Work

Since the existence of the FPGAs in mid 1980s they have been used in various fields for pro-

totyping, acceleration and reconfiguration for different computations. [15] outlines the benefits

of FPGA implementation in various fields and the advantages of such reprogrammable systems.

Initially, the FPGAs were either used to emulate the ASIC targeted applications to test the

design before the production of custom hardware [30] or to accelerate computation intensive

applications which would otherwise show poor performance with software implementation. For

example, temporal pattern and speech recognition using Hidden Markov Model first compares

the digital voice signals with the English language phonemes to generate a search string. The

search string is then compared with the dictionary words for the closest match. As the size

of the dictionary grows the matching becomes computation intensive. The parallel architec-

ture of FPGAs enhance the search process by parallel execution of the independent steps and

thus provide an appropriate platform for such applications [38]. The other computation in-

tensive applications which have successfully explored the parallel architecture of FPGAs are

graph problems such as Hamiltonian cycle [40], mathematical methods such as finite-difference

time-domain [11] and Jacobi iteration [29], communications decoding algorithms [32].

Another area where FPGAs have played a significant role is in the performance improve-

ment of algorithms for Molecular dynamics (MD). MD simulates the motion and interaction

between atoms or molecules based on different forces acting between these particles. It is the

computation of these forces that has become enormously expensive to be performed on a single

processor. [2] in 2004 was the first work published which tested the feasibility of MD using

FPGAs. [20], [39], [14] further demonstrate the usefulness and performance improvement of

www.manaraa.com

62

FPGA-based MD simulations. Yet another field of application is Bioinformatics and the earli-

est use of hardware acceleration for biological sequence comparison was in 1998 via dedicated

hardware, SAMBA (Systolic Accelerator for Molecular Biological Applications) accelerator [21].

[12] achieved a speedup of 200 times over the conventional desktop implementation for protien

sequence alignment and [3] shows a speedup of 383 times for the multiple DNA sequence align-

ment by implementing computation intensive part of comparison algorithm on FPGA. With

the enormous progress made in the field of FPGA-based acceleration, the financial modelling

methods are also being experimented for FPGA implementation. [53], [45] and [49] demonstrate

the speedup of upto 80 times for the computation intensive Monte Carlo simulation algorithm.

[17] explores the parallel architecture of FPGA for portfolio management. Guassian distri-

bution models which are used to model correlation between different entities such as finding

correlation between portfolios containing hundreds of assets used FPGA-based implementation

for this model and achieved a speedup of 33 times over CPU-based implementation [46].

The usage of FPGAs has recently grown in the accelration of real-time simulation of systems

as mentioned in Chapter 1. [9] and [10] achieved the real-time simulation for permanent

magnet synchronous motors using RT-LAB real-time simulation platform and auto generation

of the hardware blocks using Xilinx Simulink Generator (XSG). Apparently not much work

has been done using auto-generation of the hardware design. The progress has been made

towards manually desiging the hardware design to simulate high frequency power system model

using FGPAs to study the dynamic behvaior of large systems. [22] explored hardware-software

codesign approach for dual time step real-time simulation of power systems. For high frequency

transient phenomenons in power systems such as power electronic switching it is possible to

simulate such systems using FPGA as the main computation core because of the reduced

execution time offered while keeping the systems with larger time step on CPU. Recently

[6] proposed an FPGA-based real-time electromagnetic-transient program simulator which is

capable of simulating systems with a time-step of 12µs when the acceptable time step for

transient simulation is 50µs. FPGAs thus offer a promising platform for the simulation of fast

transients in power systems.

www.manaraa.com

63

Not much work has been done in the field of acceleration of vehicle system dynamics using

FPGAs. Recently, [55] demonstrated real-time simulation of railway-vehicle dynamics using

FPGA-based accelerator. A fast MATLAB/SIMULINK implementation of railway-vehicle with

a time step of 1 ms completes each step in 21.5 ms whereas with the FPGA the execution

takes .625 ms. However, the time does not include the communication delay involved due

to distributed simulation architecture. In this thesis, we share the advantage of improved

performance with the above mentioned work in addition to the successful real-time simulation

with the distributed architecture which includes HIL and VR-display. We propose a framework

to automatically generate the hardware design with sufficient accuracy that would fit on the

hardware. This paper is the initial step towards the final goal of developing FPGA-based

simulators for vehicle simulation models with driver-in-loop.

6.2 Conclusion and Future Research

In this thesis, we present a method to improve the simulation time of vehicle systems,

to meet the real-time constraints using hardware based implementation of the mathematical

models. We present the methodology adopted to implement these models, for different orders

and estimate the resource usage of the hardware design beforehand to make intelligent decisions

about the implementation strategy. We applied our methodology to an 8th order steering valve

and vehicle model. The system was successfully implemented on the hardware with a speedup of

2.2× for the overall simulation process. During the process, we designed hardware components,

that can be further used for implementation of other models. This work forms the basis for the

next step of research in this direction which will focus on developing partitioning algorithms to

provide different architectures for implementing the models across multiple hardware platforms

along with the software integration. In our work we considered the implementation across dual

FPGAs, the work can be formalized to consider any number of hardware platforms and obtain

the best hardware/software and hardware/hardware partitions.

www.manaraa.com

64

BIBLIOGRAPHY

[1] S. Alles, C. Swick, S. Mahmud, and F. Lin. Real time hardware-in-the-loop vehicle simula-

tion. In Proceedings of Instrumentation and Measurement Technology Conference (IMTC),

pages 159–164, 12-14 1992.

[2] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow. Reconfigurable molecular dynamics

simulator. In Proceedings of Field-Programmable Custom Computing Machines (FCCM),

pages 197–206, April 2004.

[3] Azzedine Boukerche, Jan Correa, Alba de Melo, Ricardo Jacobi, and Adson Rocha. An

FPGA-based accelerator for multiple biological sequence alignment with DIALIGN. In

High Performance Computing (HiPC), volume 4873 of Lecture Notes in Computer Science,

pages 71–82. Springer Berlin / Heidelberg, 2007.

[4] Gregorio Cappuccino, Pasquale Corsonello, and Giuseppe Cocorullo. High performance

vlsi modules for division and square root. Microprocessors and Microsystems, 22(5):239 –

246, 1998.

[5] Chapra and Canale. Numerical Methods for Engineers. Tata McGraw-Hill, 5th edition,

2006.

[6] Yuan Chen and V. Dinavahi. FPGA-based real-time EMTP. IEEE Transactions on Power

Delivery, 24(2):892 –902, Apr. 2009.

[7] Marco Cipellia, Werner Schiehlenb, and Federico Cheli. Driver-in-the-loop simulations

with parametric car models. In International Journal of Vehicle Mechanics and Mobility,

volume 46, pages 33–48, 2008.

www.manaraa.com

65

[8] O. Devaux, L. Levacher, and O. Huet. An advanced and powerful real-time digital transient

network analyser. IEEE Transactions on Power Delivery, 13(2):421 –426, Apr. 1998.

[9] C. Dufour, S. Abourida, and J. Belanger. Real-time simulation of permanent magnet motor

drive on FPGA chip for high-bandwidth controller tests and validation. In Proceedings of

IEEE International Symposium on Industrial Electronics, pages 2591–2596, Jul. 2006.

[10] C. Dufour, J. Belanger, S. Abourida, and V. Lapointe. FPGA-based real-time simulation

of finite-element analysis permanent magnet synchronous machine drives. In Proceedings

of Power Electronics Specialists Conference (PESC), pages 909–915, Jun. 2007.

[11] J.P. Durbano and F.E. Ortiz. FPGA-based acceleration of the 3d finite-difference time-

domain method. In Proceedings of IEEE Symposium on Field-Programmable Custom Com-

puting Machines (FCCM), pages 156–163, Apr. 2004.

[12] Stefan Dydel. Large scale protein sequence alignment using FPGA reprogrammable logic

devices. In Proceedings of International Conference on Field Programmable Logic and

Application (FPL), pages 23–32, 2004.

[13] D.D. Gajski and F. Vahid. Specification and design of embedded hardware-software sys-

tems. IEEE Design and Test of Computers, 12(1):53–67, 1995.

[14] Yongfeng Gu, Tom VanCourt Martin, and C. Herbordt. FPGA-based multigrid compu-

tation for molecular dynamics simulations. In Proceedings of IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 117–126, 2007.

[15] S. Hauck. The roles of FPGAs in reprogrammable systems. Proceedings of the IEEE,

86(4):615 –638, Apr. 1998.

[16] Scott Hauk and Andre Dehon. Reconfigurable Computing: The Theory and Practice of

FPGA-Based Computation. Morgan Kaufmann, 2008.

[17] Ali Irturk, Bridget Benson, Nikolay Laptev, and Ryan Kastner. FPGA acceleration of

www.manaraa.com

66

mean variance framework for optimal asset allocation. In Proceedings of Workshop on

High Performance Computational Finance (WHPCF), pages 1–8, 2008.

[18] Manoj Karkee. Real-time simulation and visualization architecture with field pro-

grammable gate array (FPGA). In Proceedings of the ASME World Conference on Inno-

vative Virtual Reality (WINVR), May 1995.

[19] Manoj Karkee and Brian L Steward. Open and closed loop system characteristics of

a tractor and an implement dynamic model. In American Society of Agricultural and

Biological Engineers (ASABE), 2008.

[20] Jun-Ho Kim, Chun-Sik Park, Sang-Gyum Kim, and Jung-Ha Kim. Improved interpolation

and system integration for FPGA-based molecular dynamics simulations. In Proceedings

of International Conference on Field Programmable Logic and Applications (FPL), pages

21–28, 2006.

[21] Dominique Lavenier. Speeding up genome computations with a systolic accelerator. http:

//www.irisa.fr/symbiose/lavenier/Publications/Lav98ja.pdf, 1998.

[22] P. Le-Huy, S. Guerette, L.A. Dessaint, and Hoang Le-Huy. Dual-step real-time simulation

of power electronic converters using an FPGA. In Proceedings of IEEE International

Symposium on Industrial Electronics, pages 1548–1553, 2006.

[23] R. C. Lee and F. B. Cox. A high-speed analog-digital computer for simulation. IEEE

Transactions on Electronic Computers (EC), 8(2):186–197, June 1959.

[24] M. Lerotic, Su-Lin Lee, J. Keegan, and Guang-Zhong Yang. Image constrained finite ele-

ment modelling for real-time surgical simulation and guidance. In Proceedings of Biomed-

ical Imaging: From Nano to Macro, pages 1063–1066, June 2009.

[25] Michael D. Letherwood and David D. Gunter. Ground vehicle modeling and simulation of

military vehicles using high performance computing. Parallel Computing, 27(1-2):109–140,

2001.

www.manaraa.com

67

[26] J. Maroto, E. Delso, J. Felez, and J.M. Cabanellas. Real-time traffic simulation with a

microscopic model. IEEE Transactions on Intelligent Transportation Systems, 7(4):513–

527, Dec. 2006.

[27] Giovanni De Micheli and Rajesh K. Gupta. Hardware/software co-design. IEEE MICRO,

85:349–365, 1997.

[28] P. Montuschi and P.M. Mezzalama. Survey of square rooting algorithms. IEE Proceedings

E on Computers and Digital Techniques, 137(1):31–40, Jan. 1990.

[29] G.R. Morris and V.K. Prasanna. An FPGA-based floating-point jacobi iterative solver.

In Proceedings of International Symposium on Parallel Architectures,Algorithms and Net-

works (ISPAN), page 8, Dec. 2005.

[30] S. Note, P. van Lierop, and J. van Ginderdeuren. Rapid prototyping of DSP systems:

requirements and solutions. In Proceedings of IEEE International Workshop on Rapid

System Prototyping, pages 88 –96, Jun. 1995.

[31] Lok-Fu Pak, M.O. Faruque, Xin Nie, and V. Dinavahi. A versatile cluster-based real-time

digital simulator for power engineering research. IEEE Transactions on Power Systems,

21(2):455–465, May 2006.

[32] B. Pandita and S.K. Roy. Design and implementation of a viterbi decoder using FPGAs.

In Proceedings of the International Conference on VLSI Design, pages 611–614, Jan. 1999.

[33] Andrew Percey. Advantages of the Virtex-5 FPGA 6-Input LUT Architecture. http://

www.xilinx.com/support/documentation/white papers/wp284.pdf, December 2007.

Available online (6 pages).

[34] Laura R. Ray. Nonlinear estimation of vehicle state and tire forces. In Proceedings of

American Control Conference, pages 526 –530, 24-26 1992.

[35] A.P. Sage and S.L. Smith. Real-time digital simulation for systems control. Proceedings

of the IEEE, 54(12):1802–1812, Dec. 1966.

www.manaraa.com

68

[36] D.J. Sandoz and B.H. Swanick. Real-time hybrid simulation of an adaptive-control tech-

nique. Proceedings of the Institution of Electrical Engineers, 117(11):2165 –2173, Nov.

1970.

[37] Michael W Sayers. Vehicle models for RTS applications. In International Journal of

Vehicle Mechanics and Mobility, volume 32, pages 421–438, 1999.

[38] H. Schmit and D. Thomas. Hidden markov modeling and fuzzy controllers in FPGAs.

In Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, pages

214–221, Apr. 1995.

[39] Ronald Scrofano, Maya B. Gokhale, Frans Trouw, and Viktor K. Prasanna. A hard-

ware/software approach to molecular dynamics on reconfigurable computers. In Proceed-

ings of the 14th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 23–34, 2006.

[40] M. Serra and K. Kent. Using FPGAs to solve the hamiltonian cycle problem. In Proceedings

of the International Symposium on Circuits and Systems (ISCAS), pages 228–231, May.

2003.

[41] P. Soderquist and M. Leeser. An area/performance comparison of subtractive and multi-

plicative divide/square root implementations. In Proceedings of the Symposium on Com-

puter Arithmetic, pages 132–139, 19-21 1995.

[42] Peter Soderquist and Miriam Leeser. Division and square root: Choosing the right imple-

mentation. IEEE Micro, 17(4):56–66, 1997.

[43] Kulakowski B T, Gardner J F, and Shearer J L. Dynamic modeling and control of engi-

neering systems. Cambridge University Press, 2007.

[44] M.J. Tavernini, B.A. Niemoeller, and P.T. Krein. Real-time low-level simulation of hybrid

vehicle systems for hardware-in-the-loop applications. In Proceedings of Vehicle Power

and Propulsion Conference (VPPC), pages 890–895, 710 2009.

www.manaraa.com

69

[45] David B. Thomas, Jacob A. Bower, and Wayne Luk. Automatic generation and optimi-

sation of reconfigurable financial monte-carlo simulations. In Proceedings of International

Conference on Application-specific Systems, Architectures and Processors (ASAP), pages

168–173, 2007.

[46] David B. Thomas and Wayne Luk. Sampling from the multivariate gaussian distribution

using reconfigurable hardware. In Proceedings of IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 3–12, 2007.

[47] D.E. Thomas, J.K. Adams, and H. Schmit. A model and methodology for hardware-

software codesign. IEEE Design and Test of Computers, 10(3):6–15, Sep. 1993.

[48] X. Wang and R.M. Mathur. Real-time digital simulator of the electromagnetic transients

of transmission lines with frequency dependence. IEEE Transactions on Power Delivery,

4(4):2249 –2255, Oct 1989.

[49] N.A. Woods and T. VanCourt. FPGA acceleration of quasi-monte carlo in finance. In

Proceedings of International Conference on Field Programmable Logic and Applications

(FPL), pages 335–340, 8-10 2008.

[50] Xu Xiaobo, Zheng Kangfeng, Yang Yixian, and Xu Guoai. A model for real-time simula-

tion of large-scale networks based on network processor. In Proceedings of the Broadband

Network Multimedia Technology (IC-BNMT), pages 237–241, 18-20 2009.

[51] XtremeData. Xd2000iTMdevelopment system. http://www.xtremedata.com/products/

accelerators/development-systems/xd1000dsi-ds.

[52] Randy Yates. Fixed-point arithmetic: An introduction. www.digitalsignallabs.com/

fp.pdf, 2007.

[53] G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C.C. Cheung, D.-U. Lee, R.C.C. Che-

ung, and W. Luk. Reconfigurable acceleration for monte carlo based financial simulation. In

Proceedings of International Conference on Field-Programmable Technology (FPL), pages

215–222, Dec. 2005.

www.manaraa.com

70

[54] Shupeng Zheng, Shutao Zheng, Jingfeng He, and Junwei Han. An optimized distributed

real-time simulation framework for high fidelity flight simulator research. In Proceedings of

International Conference on Information and Automation (ICIA), pages 1597–1601, 22-24

2009.

[55] Y.J. Zhou, T.X. Mei, and S. Freear. Field programmable gate array implementation of

wheel-rail contact laws. Control Theory Applications, IET, 4(2):303 –313, Feb. 2010.

	2010
	Real-time simulation of dynamic vehicle models using high performance reconﬁgurable computing platforms
	Madhu Monga
	Recommended Citation

	tmp.1335711608.pdf.evEdU

